Journal Home > Volume 16 , Issue 5

Carbon-based dual-metal sites catalysts (DMSCs) have emerged as a new frontier in the field of sustainable energy due to their unique coordination environments, electronic structure, and the maximized atom utilization. The reasonable utilization of carbon-based DMSCs provides new possibilities to achieve the outstanding catalytic performance, remarkable selectivity, and recyclability in energy-related catalysis. Based on this, this review intends to summarize the recent breakthroughs in carbon-based DMSCs for the energy catalysis. Firstly, the definition and classifications of DMSCs are proposed, mainly dividing into three types (isolated dual-metal site pairs, binuclear homologous dual-metal sites pairs, and binuclear heterologous dual-metal sites pairs). Subsequently, we discuss the potential of DMSCs targeting on energy conversion reactions, such as electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), CO2 reduction reaction (CO2RR), and N2 reduction reaction (NRR). Finally, we predict the remaining challenges and possible opportunities on the unique carbon-based DMSCs for energy applications in the future.

Publication history
Copyright
Acknowledgements

Publication history

Received: 03 November 2022
Revised: 20 December 2022
Accepted: 25 December 2022
Published: 28 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22201262 and 52201261), the Natural Science Foundation of Henan Province (No. 222300420290), and the China Postdoctoral Science Foundation (No. 2021M702939).

Return