Journal Home > Volume 16 , Issue 5

Transition metal oxides (TMOs) have been thought of potential anodic materials for lithium-ion batteries (LIBs) owing to their intriguing properties. However, the limited conductivity and drastic volume change still hinder their practical applications. Herein, a metal oxyacid salts-confined pyrolysis strategy is proposed to construct hierarchical porous metal oxide@carbon (MO@C, MO = MoO2, V2O5, and WO3) composites for solving the aforementioned problems. A water-evaporation-induced self-assembly mechanism has been put forward for fabricating the MO@polyvinyl pyrrolidone (PVP)@SiO2 precursors. After the following pyrolysis and etching process, small MO nanoparticles can be successfully encapsulated in the hierarchical porous carbon framework. Profiting from the synergistic effect of MO nanoparticles and highly conductive carbon framework, MO@C composites show excellent electrochemical properties. For example, the as-obtained MoO2@C composite exhibits a large discharge capacity (1513.7 mAh·g−1 at 0.1 A·g−1), good rate ability (443.5 mAh·g−1 at 5.0 A·g−1), and supernal long-lived stability (669.1 mAh·g−1 after 1000 cycles at 1.0 A·g−1). This work will inspire the design of novel anode materials for high-performance LIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Metal oxyacid salts-confined pyrolysis towards hierarchical porous metal oxide@carbon (MO@C) composites as lithium-ion battery anodes

Show Author's information Huizhong Xu1Chang Gao1Zhaoyang Cheng1Linghui Kong1Wei Li2( )Xiaochen Dong3Jianjian Lin1( )
Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education (MOE), Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Engineering Research Center of High Performance Polymer and Molding Technology, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China

Abstract

Transition metal oxides (TMOs) have been thought of potential anodic materials for lithium-ion batteries (LIBs) owing to their intriguing properties. However, the limited conductivity and drastic volume change still hinder their practical applications. Herein, a metal oxyacid salts-confined pyrolysis strategy is proposed to construct hierarchical porous metal oxide@carbon (MO@C, MO = MoO2, V2O5, and WO3) composites for solving the aforementioned problems. A water-evaporation-induced self-assembly mechanism has been put forward for fabricating the MO@polyvinyl pyrrolidone (PVP)@SiO2 precursors. After the following pyrolysis and etching process, small MO nanoparticles can be successfully encapsulated in the hierarchical porous carbon framework. Profiting from the synergistic effect of MO nanoparticles and highly conductive carbon framework, MO@C composites show excellent electrochemical properties. For example, the as-obtained MoO2@C composite exhibits a large discharge capacity (1513.7 mAh·g−1 at 0.1 A·g−1), good rate ability (443.5 mAh·g−1 at 5.0 A·g−1), and supernal long-lived stability (669.1 mAh·g−1 after 1000 cycles at 1.0 A·g−1). This work will inspire the design of novel anode materials for high-performance LIBs.

Keywords: transition metal oxides, anode materials, hierarchical porous carbon framework, lithium storage performance

References(72)

[1]

Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.

[2]

Grey, C. P.; Tarascon, J. M. Sustainability and in-situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

[3]

Du, R.; Wu, Y. F.; Yang, Y. C.; Zhai, T. T.; Zhou, T.; Shang, Q. Y.; Zhu, L. H.; Shang, C. X.; Guo, Z. X. Porosity engineering of MOF-based materials for electrochemical energy storage. Adv. Energy Mater. 2021, 11, 2100154.

[4]

Zhang, X.; Ju, Z. Y.; Housel, L. M.; Wang, L.; Zhu, Y.; Singh, G.; Sadique, N.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C. et al. Promoting transport kinetics in li-Ion battery with aligned porous electrode architectures. Nano Lett. 2019, 19, 8255–8261.

[5]

Zhang, X.; Ju, Z. Y.; Zhu, Y.; Takeuchi, K. J.; Takeuchi, E. S.; Marschilok, A. C.; Yu, G. H. Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes. Adv. Energy Mater. 2020, 11, 2000808.

[6]

Cong, L. N.; Xie, H. M.; Li, J. H. Hierarchical structures based on two-dimensional nanomaterials for rechargeable lithium batteries. Adv. Energy Mater. 2017, 7, 1601906.

[7]

Sun, D. P.; Tan, Z.; Tian, X. Z.; Ke, F.; Wu, Y. L.; Zhang, J. Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Res. 2021, 14, 4370–4385.

[8]

Yang, C. P.; Fu, K.; Zhang, Y.; Hitz, E.; Hu, L. B. Protected lithium-metal anodes in batteries: From liquid to solid. Adv. Mater. 2017, 29, 1701169.

[9]

Balogun, M. S.; Yu, M. H.; Huang, Y. C.; Li, C.; Fang, P. P.; Liu, Y.; Lu, X. H.; Tong, Y. X. Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium ion batteries. Nano Energy 2015, 11, 348–355.

[10]

Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.

[11]

Liu, M.; Fan, H.; Zhuo, O.; Chen, J. C.; Wu, Q.; Yang, L. J.; Peng, L. M.; Wang, X. Z.; Che, R. C.; Hu, Z. A general strategy to construct yolk-shelled metal oxides inside carbon nanocages for high-stable lithium-ion battery anodes. Nano Energy 2020, 68, 104368.

[12]

Zhao, X.; Wang, H. E.; Chen, X. X.; Cao, J.; Zhao, Y. D.; Neale, Z. G.; Cai, W.; Sui, J. H.; Cao, G. Z. Tubular MoO2 organized by 2D assemblies for fast and durable alkali-ion storage. Energy Storage Mat. 2018, 11, 161–169.

[13]

Zheng, M. B.; Tang, H.; Li, L. L.; Hu, Q.; Zhang, L.; Xue, H. G.; Pang, H. Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv. Sci. 2018, 5, 1700592.

[14]

Wang, H. J.; Wang, H.; Zhang, D. X.; Chen, G.; Chen, L.; Zhang, N.; Ma, R. Z.; Liu, X. H. Double confined MoO2/Sn/NC@NC nanotubes: Solid-liquid synthesis, conformal transformation, and excellent lithium-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 19836–19845.

[15]

Hou, T. Y.; Liu, B. R.; Sun, X. H.; Fan, A. R.; Xu, Z. K.; Cai, S.; Zheng, C. M.; Yu, G. H.; Tricoli, A. Covalent coupling-stabilized transition-metal sulfide/carbon nanotube composites for lithium/sodium-ion batteries. ACS Nano 2021, 15, 6735–6746.

[16]

Tabassum, H.; Zou, R. Q.; Mahmood, A.; Liang, Z. B.; Wang, Q. F.; Zhang, H.; Gao, S.; Qu, C.; Guo, W. H.; Guo, S. J. A universal strategy for hollow metal oxide nanoparticles encapsulated into B/N co-doped graphitic nanotubes as high-performance lithium-ion battery anodes. Adv. Mater. 2018, 30, 1705441.

[17]

Li, Z.; Wang, C.; Chen, X. Z.; Wang, X. X.; Li, X. Y.; Yamauchi, Y.; Xu, X. J.; Wang, J.; Lin, C. F.; Luo, D. et al. MoOx nanoparticles anchored on N-doped porous carbon as Li-ion battery electrode. Chem. Eng. J. 2020, 381, 122588.

[18]

Wang, X. F.; Tang, Y. H.; Shi, P. H.; Fan, J. C.; Xu, Q. J.; Min, Y. L. Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chem. Eng. J. 2018, 334, 1642–1649.

[19]

Huang, Y.; Fang, Y. J.; Lu, X. F.; Luan, D. Y.; Lou, X. W. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew. Chem., Int. Ed. 2020, 59, 19914–19918.

[20]

Xu, H. Z.; Sun, L.; Li, W.; Gao, M. Y.; Zhou, Q. N.; Li, P.; Yang, S. K.; Lin, J. J. Facile synthesis of hierarchical g-C3N4@WS2 composite as Lithium-ion battery anode. Chem. Eng. J. 2022, 435, 135129.

[21]

Wang, H. G.; Wu, Q.; Wang, Y. H.; Wang, X.; Wu, L. L.; Song, S. Y.; Zhang, H. J. Molecular engineering of monodisperse SnO2 nanocrystals anchored on doped graphene with high-performance lithium/sodium-storage properties in half/full cells. Adv. Energy Mater. 2018, 9, 1802993.

[22]

Zhang, C. W.; Song, Y.; Xu, L. B.; Yin, F. X. In-situ encapsulation of Co/Co3O4 nanoparticles in nitrogen-doped hierarchically ordered porous carbon as high performance anode for lithium-ion batteries. Chem. Eng. J. 2020, 380, 122545.

[23]

Pan, L.; Zhang, Y. H.; Lu, F.; Du, Y.; Lu, Z. J.; Yang, Y. J.; Ye, T.; Liang, Q. F.; Bando, Y.; Wang, X. Exposed facet engineering design of graphene-SnO2 nanorods for ultrastable Li-ion batteries. Energy Storage Mater. 2019, 19, 39–47.

[24]

Azhar, A.; Zakaria, M. B.; Ebeid, E. M.; Chikyow, T.; Bando, Y.; Alshehri, A. A.; Alghamdi, Y. G.; Cai, Z. X.; Kumar, N. A.; Lin, J. J. et al. Synthesis of hollow Co-Fe prussian blue analogue cubes by using silica spheres as a sacrificial template. ChemistryOpen 2018, 7, 599–603.

[25]

Sun, W. H.; Zhou, W. Z. Dual-step reduction of copper and formation mechanism of Cu pseudo-icosahedral microcrystals. Cryst. Growth Des. 2022, 22, 2611–2619.

[26]

Du, J.; Chen, A. B.; Gao, X. Q.; Zhang, Y.; Lv, H. J. Reasonable construction of hollow carbon spheres with an adjustable shell surface for supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 11750–11757.

[27]

Das, K.; Yan, T. T.; Paul, S.; Qiu, S. L.; Ben, T.; Roy, S. Self-assembly and cascade catalysis by a soft-oxometalate (SOM) system. Front. Chem. 2020, 8, 601814.

[28]

Hou, J. H.; Cao, C. B.; Idrees, F.; Ma, X. L. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 2015, 9, 2556–2564.

[29]

Wang, J. Y.; Tang, H. J.; Wang, H.; Yu, R. B.; Wang, D. Multi-shelled hollow micro-/nanostructures: Promising platforms for lithium-ion batteries. Mater. Chem. Front. 2017, 1, 414–430.

[30]

Wu, R. B.; Wang, D. P.; Rui, X. H.; Liu, B.; Zhou, K.; Law, A. W. K.; Yan, Q. Y.; Wei, J.; Chen, Z. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries. Adv. Mater. 2015, 27, 3038–3044.

[31]

Wang, C. L.; Sun, L. S.; Zhang, F. F.; Wang, X. X.; Sun, Q. J.; Cheng, Y.; Wang, L. M. Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small 2017, 13, 1701246.

[32]

Ni, J. F.; Zhao, Y.; Li, L.; Mai, L. Q. Ultrathin MoO2 nanosheets for superior lithium storage. Nano Energy 2015, 11, 129–135.

[33]

Jampani, P. H.; Velikokhatnyi, O.; Kadakia, K.; Hong, D. H.; Damle, S. S.; Poston, J. A.; Manivannan, A.; Kumta, P. N. High energy density titanium doped-vanadium oxide-vertically aligned CNT composite electrodes for supercapacitor applications. J. Mater. Chem. A 2015, 3, 8413–8432.

[34]

Chen, Y. P.; Yang, G.; Zhang, Z. H.; Yang, X. Y.; Hou, W. H.; Zhu, J. J. Polyaniline-intercalated layered vanadium oxide nanocomposites-one-pot hydrothermal synthesis and application in lithium battery. Nanoscale 2010, 2, 2131–2138.

[35]

Xiao, Y.; Jiang, M. X.; Cao, M. H. Developing WO3 as high-performance anode material for lithium-ion batteries. Mater. Lett. 2021, 285, 129129.

[36]

Sun, Y. M.; Hu, X. H.; Luo, W.; Huang, Y. H. Self-assembled hierarchical MoO2/graphene nanoarchitectures and their application as a high-performance anode material for lithium-ion batteries. ACS Nano 2011, 5, 7100–7107.

[37]

Zhang, Y. Z.; Ge, X.; Kang, Q.; Kong, Z. K.; Wang, Y. L.; Zhan, L. Vanadium oxide nanorods embed in porous graphene aerogel as high-efficiency polysulfide-trapping-conversion mediator for high performance lithium-sulfur batteries. Chem. Eng. J. 2020, 393, 124570.

[38]

Wang, Y.; Jiao, Y. Q.; Yan, H. J.; Yang, G. C.; Tian, C. G.; Wu, A. P.; Liu, Y.; Fu, H. G. Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting. Angew. Chem., Int. Ed. 2022, 61, e202116233.

[39]

Yoon, S.; Woo, S. G.; Jung, K. N.; Song, H. Conductive surface modification of cauliflower-like WO3 and its electrochemical properties for lithium-ion batteries. J. Alloys Compd. 2014, 613, 187–192.

[40]

Shi, R. Y.; Han, C. P.; Xu, X. F.; Qin, X. Y.; Xu, L.; Li, H. F.; Li, J. Q.; Wong, C. P.; Li, B. H. Electrospun N-doped hierarchical porous carbon nanofiber with improved degree of graphitization for high-performance lithium ion capacitor. Chem. —Eur. J. 2018, 24, 10460–10467.

[41]

Chen, N.; Yao, Y.; Wang, D. X.; Wei, Y. J.; Bie, X. F.; Wang, C. Z.; Chen, G.; Du, F. LiFe(MoO4)2 as a novel anode material for lithium-Ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 10661–10666.

[42]

Zhu, J. K.; Tu, W. M.; Pan, H. F.; Zhang, H.; Liu, B.; Cheng, Y. P.; Deng, Z.; Zhang, H. N. Self-templating synthesis of hollow Co3O4 nanoparticles embedded in N, S-dual-doped reduced graphene oxide for lithium ion batteries. ACS Nano 2020, 14, 5780–5787.

[43]

Shen, Y. H.; Jiang, Y. L.; Yang, Z. Z.; Dong, J.; Yang, W.; An, Q. Y.; Mai, L. Q. Electronic structure modulation in MoO2/MoP heterostructure to induce fast electronic/ionic diffusion kinetics for lithium storage. Adv. Sci. 2022, 9, 2104504.

[44]

Zhang, H. J.; Wang, K. X.; Wu, X. Y.; Jiang, Y. M.; Zhai, Y. B.; Wang, C.; Wei, X.; Chen, J. S. MoO2/Mo2C heteronanotubes function as high-performance Li-Ion battery electrode. Adv. Funct. Mater. 2014, 24, 3399–3404.

[45]

Guo, B. K.; Fang, X. P.; Li, B.; Shi, Y. F.; Ouyang, C. Y.; Hu, Y. S.; Wang, Z. X.; Stucky, G. D.; Chen, L. Q. Synthesis and lithium storage mechanism of ultrafine MoO2 nanorods. Chem. Mater. 2012, 24, 457–463.

[46]

Ihsana, M.; Wang, H. Q.; Majid, S. R.; Yang, J. P.; Kennedy, S. J.; Guo, Z. P.; Liu, H. K. MoO2/Mo2C/C spheres as anode materials for lithium ion batteries. Carbon 2016, 96, 1200–1207.

[47]

Yang, X.; Li, Q.; Wang, H. J.; Feng, J.; Zhang, M.; Yuan, R.; Chai, Y. Q. In-situ carbonization for template-free synthesis of MoO2-Mo2C-C microspheres as high-performance lithium battery anode. Chem. Eng. J. 2018, 337, 74–81.

[48]

Um, J. H.; Palanisamy, K.; Jeong, M.; Kim, H.; Yoon, W. S. Phase dynamics on conversion-reaction-based Tin-doped ferrite anode for next-generation lithium batteries. ACS Nano 2019, 13, 5674–5685.

[49]

Huang, Y.; Xu, Z. H.; Mai, J. Q.; Lau, T. K.; Lu, X. H.; Hsu, Y. J.; Chen, Y. S.; Lee, A. C.; Hou, Y. L.; Meng, Y. S. et al. Revisiting the origin of cycling enhanced capacity of Fe3O4 based nanostructured electrode for lithium ion batteries. Nano Energy 2017, 41, 426–433.

[50]

Liu, Y.; Chen, Z. L.; Jia, H. X.; Xu, H. B.; Liu, M.; Wu, R. B. Iron-doping-induced phase transformation in dual-carbon-confined cobalt diselenide enabling superior lithium storage. ACS Nano 2019, 13, 6113–6124.

[51]

Yu, B.; Huang, A. J.; Chen, D. J.; Srinivas, K.; Zhang, X. J.; Wang, X. Q.; Wang, B.; Ma, F.; Liu, C. L.; Zhang, W. L. et al. In-situ construction of Mo2C quantum dots-decorated CNT networks as a multifunctional electrocatalyst for advanced lithium-sulfur batteries. Small 2021, 17, 2100460.

[52]

Shi, N. X.; Xi, B. J.; Huang, M.; Ma, X. J.; Li, H. B.; Feng, J. K.; Xiong, S. L. Hierarchical octahedra constructed by Cu2S/MoS2⊂carbon framework with enhanced sodium storage. Small 2020, 16, 2000952.

[53]

Zhu, Y. R.; Li, J. Y.; Yun, X. R.; Zhao, G. G.; Ge, P.; Zou, G. Q.; Liu, Y.; Hou, H. S.; Ji, X. B. Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 2020, 12, 16.

[54]

Li, B. S.; Xi, B. J.; Feng, Z. Y.; Lin, Y.; Liu, J. C.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Hierarchical porous nanosheets constructed by graphene-coated, interconnected TiO2 nanoparticles for ultrafast sodium storage. Adv. Mater. 2018, 30, 1705788.

[55]

He, Z. S.; Huang, L. A.; Guo, J. F.; Pei, S. E.; Shao, H. B.; Wang, J. M. Novel hierarchically branched CoC2O4@CoO/Co composite arrays with superior lithium storage performance. Energy Storage Mater. 2020, 24, 362–372.

[56]

Qin, J.; Wang, T. S.; Liu, D. Y.; Liu, E. Z.; Zhao, N. Q.; Shi, C. S.; He, F.; Ma, L. Y.; He, C. N. A top-down strategy toward SnSb in-plane nanoconfined 3D N-doped porous graphene composite microspheres for high performance Na-ion battery anode. Adv. Mater. 2018, 30, 1704670.

[57]

Cuan, J.; Zhang, F.; Zheng, Y.; Zhou, T. F.; Liang, G. M.; Guo, Z. P.; Pang, W. K.; Yu, X. B. Heterocarbides reinforced electrochemical energy storage. Small 2019, 35, 1903652.

[58]

Wang, X. C.; Huang, Y. D.; Jia, D. Z.; Pang, W. K.; Guo, Z. P.; Du, Y. P.; Tang, X. C.; Cao, Y. L. Self-assembled sandwich-like vanadium oxide/graphene mesoporous composite as high-capacity anode material for lithium ion batteries. Inorg. Chem. 2015, 54, 11799–11806.

[59]

Li, Y. T.; Zhang, S.; Wang, S. T.; Leng, J.; Jiang, C. H.; Ren, X. W.; Zhang, Z. T.; Yang, Y.; Tang, Z. L. A multi-shelled V2O3/C composite with an overall coupled carbon scaffold enabling ultrafast and stable lithium/sodium storage. J. Mater. Chem. A 2019, 7, 19234–19240.

[60]

Fernando, J. F. S.; Siriwardena, D. P.; Firestein, K. L.; Zhang, C.; von Treifeldt, J. E.; Lewis, C. E. M.; Wang, T.; Dubal, D. P.; Golberg, D. V. Enriched pseudocapacitive lithium storage in electrochemically activated carbonaceous vanadium(IV, V) oxide hydrate. J. Mater. Chem. A 2020, 8, 13183–13196.

[61]

Xiong, D. B.; Li, X. F.; Bai, Z. M.; Shan, H.; Fan, L. L.; Wu, C. X.; Li, D. J.; Lu, S. G. Superior cathode performance of nitrogen-doped graphene frameworks for lithium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 10643–10651.

[62]

Bekarevich, R.; Pihosh, Y.; Tanaka, Y.; Nishikawa, K.; Matsushita, Y.; Hiroto, T.; Ohata, H.; Ohno, T.; Minegishi, T.; Sugiyama, M. et al. Conversion reaction in the binder-free anode for fast-charging Li-ion batteries based on WO3 nanorods. ACS Appl. Energy Mater. 2020, 3, 6700–6708.

[63]

Li, X.; Sun, X. H.; Hu, X. D.; Fan, F. R.; Cai, S.; Zheng, C. M.; Stucky, G. D. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 2020, 77, 105143.

[64]

Wang, C. Y.; Zhao, Y. J.; Zhou, L. L.; Liu, Y.; Zhang, W.; Zhao, Z. W.; Hozzein, W. N.; Alharbi, H. M. S.; Li, W.; Zhao, D. Y. Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries. J. Mater. Chem. A 2018, 6, 21550–21557.

[65]

Wang, H. E.; Zhao, X.; Yin, K. L.; Li, Y.; Chen, L. H.; Yang, X. Y.; Zhang, W. J.; Su, B. L.; Cao, G. Z. Superior pseudocapacitive lithium-ion storage in porous vanadium oxides@C heterostructure composite. ACS Appl. Mater. Interfaces 2017, 9, 43665–43673.

[66]

Li, L. Y.; Liu, P. C.; Zhu, K. J.; Wang, J.; Liu, J. S.; Qiu, J. H. A general and simple method to synthesize well-crystallized nanostructured vanadium oxides for high performance Li-ion batteries. J. Mater. Chem. A 2015, 3, 9385–9389.

[67]

Glushenkov, A. M.; Hassan, M. F.; Stukachev, V. I.; Guo, Z. P.; Liu, H. K.; Kuvshinov, G. G.; Chen, Y. Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. J. Solid State Electrochem. 2010, 14, 1841–1846.

[68]

Liu, P. C.; Zhu, K. J.; Xu, Y.; Bian, K.; Wang, J.; Tai, G. A.; Gao, Y. F.; Luo, H. J.; Liu, J. S. Hierarchical porous intercalation-type V2O3 as high-performance anode materials for Li-ion batteries. Chem. —Eur. J. 2017, 23, 7538–7544.

[69]

Li, X. X.; Fu, J. J.; Pan, Z. G.; Su, J. J.; Xu, J. W.; Gao, B.; Peng, X.; Wang, L.; Zhang, X. M.; Chu, P. K. Peapod-like V2O3 nanorods encapsulated into carbon as binder-free and flexible electrodes in lithium-ion batteries. J. Power Sources 2016, 331, 58–66.

[70]

Li, P.; Li, X.; Zhao, Z. Y.; Wang, M. S.; Fox, T.; Zhang, Q.; Zhou, Y. Correlations among structure, composition and electrochemical performances of WO3 anode materials for lithium ion batteries. Electrochim. Acta 2016, 192, 148–157.

[71]

Gu, Z. J.; Li, H. Q.; Zhai, T. Y.; Yang, W. S.; Xia, Y. Y.; Ma, Y.; Yao, J. N. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. J. Solid State Chem. 2007, 180, 98–105.

[72]

Duan, X. C.; Xiao, S. H.; Wang, L. L.; Huang, H.; Liu, Y.; Li, Q. H.; Wang, T. H. Ionic liquid-modulated preparation of hexagonal tungsten trioxide mesocrystals for lithium-ion batteries. Nanoscale 2015, 7, 2230–2234.

File
12274_2022_5445_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 October 2022
Revised: 09 December 2022
Accepted: 25 December 2022
Published: 15 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

J. J. Lin is supported by the Taishan Scholar Project of Shandong Province (No. tsqn201909115). And this work was partly supported by Qingdao University of Science and Technology Hua Xue 201919 (No. QUSTHX201919).

Return