Journal Home > Volume 16 , Issue 5

Bismuth-based materials have attracted broad research interest as catalysts for electrocatalytic CO2 reduction (ECR) to formate in recent years. Most studies have been focused on exploring materials with high activity, selectivity, and durability, while little attention has been paid to the catalysts structure stability especially under working conditions of CO2 electrolysis. Here, starting from the precursor of bismuth oxide formate nanowires (BiOCOOH NWs), it was found that BiOCOOH NWs were easy to electrochemically evolve into two-dimensional sheet structure in CO2-saturated KHCO3 solution and would further reconstitute into larger ultrathin bismuth nanosheets covered with amorphous oxide thin layer (Bi/BiOx NSs). However, in Ar-saturated HCOONa solution, the one-dimensional structure could be maintained and reconstructed into rough porous bismuth nanowires (Bi NWs). Bi NWs showed less stability during ECR, which also generated surface amorphous oxide layer and further fragmentated into nanoparticles or nanosheets. Bi/BiOx NSs showed better activity, selectivity, and stability than Bi NWs, thanks to the high exposing active sites, enhancing CO2 adsorption and charge transfer. The demonstrated electrolyte dependence of structure evolution for bismuth-based catalysts and their performance for CO2 electroreduction could provide guidance for the design and synthesis of efficient catalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ structural evolution of BiOCOOH nanowires and their performance towards electrocatalytic CO2 reduction

Show Author's information Yinlong Jiang1,2,§Qingsong Chen1,§( )Di Wang1Xin Li1Yuping Xu1Zhongning Xu1Guocong Guo1( )
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
College of Chemistry, Fuzhou University, Fuzhou 350116, China

§ Yinlong Jiang and Qingsong Chen contributed equally to this work.

Abstract

Bismuth-based materials have attracted broad research interest as catalysts for electrocatalytic CO2 reduction (ECR) to formate in recent years. Most studies have been focused on exploring materials with high activity, selectivity, and durability, while little attention has been paid to the catalysts structure stability especially under working conditions of CO2 electrolysis. Here, starting from the precursor of bismuth oxide formate nanowires (BiOCOOH NWs), it was found that BiOCOOH NWs were easy to electrochemically evolve into two-dimensional sheet structure in CO2-saturated KHCO3 solution and would further reconstitute into larger ultrathin bismuth nanosheets covered with amorphous oxide thin layer (Bi/BiOx NSs). However, in Ar-saturated HCOONa solution, the one-dimensional structure could be maintained and reconstructed into rough porous bismuth nanowires (Bi NWs). Bi NWs showed less stability during ECR, which also generated surface amorphous oxide layer and further fragmentated into nanoparticles or nanosheets. Bi/BiOx NSs showed better activity, selectivity, and stability than Bi NWs, thanks to the high exposing active sites, enhancing CO2 adsorption and charge transfer. The demonstrated electrolyte dependence of structure evolution for bismuth-based catalysts and their performance for CO2 electroreduction could provide guidance for the design and synthesis of efficient catalysts.

Keywords: carbon dioxide, electrocatalysis, bismuth, structure evolution, formate

References(64)

[1]

Sun, Z. Y.; Ma, T.; Tao, H. C.; Fan, Q.; Han, B. X. Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 2017, 3, 560–587.

[2]

Du, D. W.; Lan, R.; Humphreys, J.; Tao, S. W. Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. J. Appl. Electrochem. 2017, 47, 661–678.

[3]

Min, X. Q.; Kanan, M. W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: High mass activity at low overpotential and identification of the deactivation pathway. J. Am. Chem. Soc. 2015, 137, 4701–4708.

[4]

Jiang, B.; Zhang, X. G.; Jiang, K.; Wu, D. Y.; Cai, W. B. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces. J. Am. Chem. Soc. 2018, 140, 2880–2889.

[5]

Gao, D. F.; Zhou, H.; Cai, F.; Wang, D. N.; Hu, Y. F.; Jiang, B.; Cai, W. B.; Chen, X. Q.; Si, R.; Yang, F. et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles. Nano Res. 2017, 10, 2181–2191.

[6]

Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

[7]

Lamagni, P.; Miola, M.; Catalano, J.; Hvid, M. S.; Mamakhel, M. A. H.; Christensen, M.; Madsen, M. R.; Jeppesen, H. S.; Hu, X. M.; Daasbjerg, K. et al. Restructuring metal-organic frameworks to nanoscale bismuth electrocatalysts for highly active and selective CO2 reduction to formate. Adv. Funct. Mater. 2020, 30, 1910408.

[8]
Li, Y. Z.; Chen, J. L.; Chen, S.; Liao, X. L.; Zhao, T. T.; Cheng, F. Y.; Wang, H. In situ confined growth of bismuth nanoribbons with active and robust edge sites for boosted CO2 electroreduction. ACS Energy Lett. 2022, 7, 1454–1461.
[9]

Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 14197–14201.

[10]

Zhao, Y.; Liu, X. L.; Liu, Z. X.; Lin, X.; Lan, J.; Zhang, Y. L.; Lu, Y. R.; Peng, M.; Chan, T. S.; Tan, Y. W. Spontaneously Sn-doped Bi/BiOx core–shell nanowires toward high-performance CO2 electroreduction to liquid fuel. Nano Lett. 2021, 21, 6907–6913.

[11]
Wang, D.; Liu, C. W.; Zhang, Y. N.; Wang, Y. Y.; Wang, Z. L.; Ding, D.; Cui, Y.; Zhu, X. M.; Pan, C. S.; Lou, Y. et al. CO2 electroreduction to formate at a partial current density up to 590 mA·mg−1 via micrometer-scale lateral structuring of bismuth nanosheets. Small 2021, 17, 2100602.
[12]

Zhuo, D. H.; Chen, Q. S.; Zhao, X. H.; Jiang, Y. L.; Lu, J.; Xu, Z. N.; Guo, G. C. Ce-doped Bi based catalysts for highly efficient electroreduction of CO2 to formate. J. Mater. Chem. C 2021, 9, 7900–7904.

[13]

Xie, H.; Zhang, T.; Xie, R. K.; Hou, Z. F.; Ji, X. C.; Pang, Y. Y.; Chen, S. Q.; Titirici, M. M.; Weng, H. M.; Chai, G. L. Facet engineering to regulate surface states of topological crystalline insulator bismuth rhombic dodecahedrons for highly energy efficient electrochemical CO2 reduction. Adv. Mater. 2021, 33, 2008373.

[14]

Wang, Z. Y.; Wang, C.; Hu, Y. D.; Yang, S.; Yang, J.; Chen, W. X.; Zhou, H.; Zhou, F. Y.; Wang, L. X.; Du, J. Y. et al. Simultaneous diffusion of cation and anion to access N, S co-coordinated Bi-sites for enhanced CO2 electroreduction. Nano Res. 2021, 14, 2790–2796.

[15]

Yi, L. C.; Chen, J. X.; Shao, P.; Huang, J. H.; Peng, X. X.; Li, J. W.; Wang, G. X.; Zhang, C.; Wen, Z. H. Molten-salt-assisted synthesis of bismuth nanosheets for long-term continuous electrocatalytic conversion of CO2 to formate. Angew. Chem., Int. Ed. 2020, 132, 20287–20294.

[16]

An, X. W.; Li, S. S.; Hao, X. Q.; Xie, Z. K.; Du, X.; Wang, Z. D.; Hao, X. G.; Abudula, A.; Guan, G. Q. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate. Renewable Sustainable Energy Rev. 2021, 143, 110952.

[17]

Deng, P. L.; Yang, F.; Wang, Z. T.; Chen, S. H.; Zhou, Y. Z.; Zaman, S.; Xia, B. Y. Metal-organic framework-derived carbon nanorods encapsulating bismuth oxides for rapid and selective CO2 electroreduction to formate. Angew. Chem., Int. Ed. 2020, 59, 10807–10813.

[18]

Jiang, Y. L.; Li, G. C.; Chen, Q. S.; Xu, Z. N.; Lin, S. S.; Guo, G. C. Porous bismuth nanoflowers enriched with lattice dislocations for highly efficient electrocatalytic reduction of carbon dioxide to formate. Acta Chim. Sinica 2022, 80, 703–707.

[19]

Zhao, X. H.; Chen, Q. S.; Zhuo, D. H.; Lu, J.; Xu, Z. N.; Wang, C. M.; Tang, J. X.; Sun, S. G.; Guo, G. C. Oxygen vacancies enriched Bi based catalysts for enhancing electrocatalytic CO2 reduction to formate. Electrochim. Acta 2021, 367, 137478.

[20]

Dutta, A.; Montiel, I. Z.; Kiran, K.; Rieder, A.; Grozovski, V.; Gut, L.; Broekmann, P. A tandem (Bi2O3 → Bimet) catalyst for highly efficient ec-CO2 conversion into formate: Operando Raman spectroscopic evidence for a reaction pathway change. ACS Catal. 2021, 11, 4988–5003.

[21]

Deng, P. L.; Wang, H. M.; Qi, R. J.; Zhu, J. X.; Chen, S. H.; Yang, F.; Zhou, L.; Qi, K.; Liu, H. F.; Xia, B. Y. Bismuth oxides with enhanced bismuth-oxygen structure for efficient electrochemical reduction of carbon dioxide to formate. ACS Catal. 2020, 10, 743–750.

[22]

Zhang, M.; Wei, W. B.; Zhou, S. H.; Ma, D. D.; Cao, A. H.; Wu, X. T.; Zhu, Q. L. Engineering a conductive network of atomically thin bismuthene with rich defects enables CO2 reduction to formate with industry-compatible current densities and stability. Energy Environ. Sci. 2021, 14, 4998–5008.

[23]

Yang, X. X.; Deng, P. L.; Liu, D. Y.; Zhao, S.; Li, D.; Wu, H.; Ma, Y. M.; Xia, B. Y.; Li, M. T.; Xiao, C. H. et al. Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction. J. Mater. Chem. A 2020, 8, 2472–2480.

[24]

Liu, S. Q.; Shahini, E.; Gao, M. R.; Gong, L.; Sui, P. F.; Tang, T.; Zeng, H. B.; Luo, J. L. Bi2O3 nanosheets grown on carbon nanofiber with inherent hydrophobicity for high-performance CO2 electroreduction in a wide potential window. ACS Nano 2021, 15, 17757–17768.

[25]

Liu, S. Q.; Gao, M. R.; Feng, R. F.; Gong, L.; Zeng, H. B.; Luo, J. L. Electronic delocalization of bismuth oxide induced by sulfur doping for efficient CO2 electroreduction to formate. ACS Catal. 2021, 11, 7604–7612.

[26]

Liu, S. B.; Lu, X. F.; Xiao, J.; Wang, X.; Lou, X. W. Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew. Chem., Int. Ed. 2019, 58, 13828–13833.

[27]

Feng, X. Z.; Zou, H. Y.; Zheng, R. J.; Wei, W. F.; Wang, R. H.; Zou, W. S.; Lim, G.; Hong, J.; Duan, L. L.; Chen, H. Bi2O3/BiO2 nanoheterojunction for highly efficient electrocatalytic CO2 reduction to formate. Nano Lett. 2022, 22, 1656–1664.

[28]

Wang, Y. T.; Cheng, L.; Liu, J. Z.; Xiao, C. Q.; Zhang, B.; Xiong, Q. H.; Zhang, T.; Jiang, Z. L.; Jiang, H.; Zhu, Y. H. et al. Rich bismuth–oxygen bonds in bismuth derivatives from Bi2S3 pre-catalysts promote the electrochemical reduction of CO2. ChemElectroChem 2020, 7, 2864–2868.

[29]

Sui, P. F.; Xu, C. Y.; Zhu, M. N.; Liu, S. B.; Liu, Q. X.; Luo, J. L. Interface-induced electrocatalytic enhancement of CO2-to-formate conversion on heterostructured bismuth-based catalysts. Small 2022, 18, 2105682.

[30]

Cao, C. S.; Ma, D. D.; Gu, J. F.; Xie, X. Y.; Zeng, G.; Li, X. F.; Han, S. G.; Zhu, Q. L.; Wu, X. T.; Xu, Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew. Chem., Int. Ed. 2020, 59, 15014–15020.

[31]

Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

[32]

Yuan, W. W.; Wu, J. X.; Zhang, X. D.; Hou, S. Z.; Xu, M.; Gu, Z. Y. In situ transformation of bismuth metal-organic frameworks for efficient selective electroreduction of CO2 to formate. J. Mater. Chem. A 2020, 8, 24486–24492.

[33]

Wang, L. W.; Liu, P. F.; Xu, Y. D.; Zhao, Y. X.; Xue, N. H.; Guo, X. F.; Peng, L. M.; Zhu, Y.; Ding, M. N.; Wang, Q. et al. Enhanced catalytic activity and stability of bismuth nanosheets decorated by 3-aminopropyltriethoxysilane for efficient electrochemical reduction of CO2. Appl. Catal. B:Environ. 2021, 298, 120602.

[34]

Li, N. H.; Yan, P.; Tang, Y. H.; Wang, J. H.; Yu, X. Y.; Wu, H. B. In-situ formation of ligand-stabilized bismuth nanosheets for efficient CO2 conversion. Appl. Catal. B: Environ. 2021, 297, 120481.

[35]

Zhu, J. H.; Fan, J.; Cheng, T. L.; Cao, M. Y.; Sun, Z. H.; Zhou, R.; Huang, L.; Wang, D.; Li, Y. G.; Wu, Y. P. Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO2 reduction. Nano Energy 2020, 75, 104939.

[36]

Fu, X. B.; Wang, J. A.; Hu, X. B.; He, K.; Tu, Q.; Yue, Q.; Kang, Y. J. Scalable chemical interface confinement reduction BiOBr to bismuth porous nanosheets for electroreduction of carbon dioxide to liquid fuel. Adv. Funct. Mater. 2022, 32, 2107182.

[37]

Xu, J. Q.; Yang, S. H.; Ji, L.; Mao, J. W.; Zhang, W.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Yang, C. K.; Chen, H. et al. High current CO2 reduction realized by edge/defect-rich bismuth nanosheets. Nano Res., 2023, 16, 53–61.

[38]

Wang, D.; Chang, K.; Zhang, Y. N.; Wang, Y. Y.; Liu, Q. X.; Wang, Z. L.; Ding, D.; Cui, Y.; Pan, C. S.; Lou, Y. et al. Unravelling the electrocatalytic activity of bismuth nanosheets towards carbon dioxide reduction: Edge plane versus basal plane. Appl. Catal. B:Environ. 2021, 299, 120693.

[39]

Han, N.; Wang, Y.; Yang, H.; Deng, J.; Wu, J. H.; Li, Y. F.; Li, Y. G. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat. Commun. 2018, 9, 1320.

[40]
Fu, H. Q.; Liu, J. X.; Bedford, N. M.; Wang, Y.; Wright, J.; Liu, P. F.; Wen, C. F.; Wang, L.; Yin, H. J.; Qi, D. C. et al. Operando converting BiOCl into Bi2O2(CO3)xCly for efficient electrocatalytic reduction of carbon dioxide to formate. Nano-Micro Lett. 2022, 14, 121.
[41]

Wang, Y. H.; Wang, B.; Jiang, W. J.; Liu, Z. L.; Zhang, J. W.; Gao, L. Z.; Yao, W. Sub-2 nm ultra-thin Bi2O2CO3 nanosheets with abundant Bi–O structures toward formic acid electrosynthesis over a wide potential window. Nano Res. 2022, 15, 2919–2927.

[42]

Wang, J.; Mao, J. T.; Zheng, X. L.; Zhou, Y. N.; Xu, Q. Sulfur boosting CO2 reduction activity of bismuth subcarbonate nanosheets via promoting proton-coupled electron transfer. Appl. Surf. Sci. 2021, 562, 150197.

[43]

Yang, H.; Han, N.; Deng, J.; Wu, J. H.; Wang, Y.; Hu, Y. P.; Ding, P.; Li, Y. F.; Li, Y. G.; Lu, J. Selective CO2 reduction on 2D mesoporous Bi nanosheets. Adv. Energy Mater. 2018, 8, 1801536.

[44]

Zhao, M. M.; Gu, Y. L.; Gao, W. C.; Cui, P. X.; Tang, H.; Wei, X. Y.; Zhu, H.; Li, G. Q.; Yan, S. C.; Zhang, X. Y. et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction. Appl. Catal. B:Environ. 2020, 266, 118625.

[45]

Zhang, Y.; Zhang, X. L.; Ling, Y. Z.; Li, F. W.; Bond, A. M.; Zhang, J. Controllable synthesis of few-layer bismuth subcarbonate by electrochemical exfoliation for enhanced CO2 reduction performance. Angew. Chem., Int. Ed. 2018, 57, 13283–13287.

[46]

Tang, S. F.; Lu, X. L.; Zhang, C.; Wei, Z. W.; Si, R.; Lu, T. B. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO2 electroreduction to formate. Sci. Bull. 2021, 66, 1533–1541.

[47]

Ning, B. X.; Xu, Q. C.; Liu, M. M.; Jiang, H.; Hu, Y. J.; Li, C. Z. Bismuthene with stable Bi–O bonds for efficient CO2 electroreduction to formate. Chem. Eng. Sci. 2022, 251, 117409.

[48]

Ma, W. X.; Bu, J.; Liu, Z. P.; Yan, C.; Yao, Y.; Chang, N. H.; Zhang, H. P.; Wang, T.; Zhang, J. Monoclinic scheelite bismuth vanadate derived bismuthene nanosheets with rapid kinetics for electrochemically reducing carbon dioxide to formate. Adv. Funct. Mater. 2021, 31, 2006704.

[49]

Xing, Y. L.; Chen, H. H.; Liu, Y.; Sheng, Y. L.; Zeng, J.; Geng, Z. G.; Bao, J. A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH. Chem. Commun. 2021, 57, 1502–1505.

[50]

Wang, Y. T.; Li, Y. H.; Liu, J. Z.; Dong, C. X.; Xiao, C. Q.; Cheng, L.; Jiang, H. L.; Jiang, H.; Li, C. Z. BiPO4-derived 2D nanosheets for efficient electrocatalytic reduction of CO2 to liquid fuel. Angew. Chem., Int. Ed. 2021, 60, 7681–7685.

[51]
Yuan, Y. L.; Wang, Q. Y.; Qiao, Y.; Chen, X. L.; Yang, Z. L.; Lai, W. C.; Chen, T. W.; Zhang, G. H.; Duan, H. G.; Liu, M. et al. In situ structural reconstruction to generate the active sites for CO2 electroreduction on bismuth ultrathin nanosheets. Adv. Energy Mater. 2022, 12, 2200970.
[52]

Zeng, G.; He, Y. C.; Ma, D. D.; Luo, S. W.; Zhou, S. H.; Cao, C. S.; Li, X. F.; Wu, X. T.; Liao, H. G.; Zhu, Q. L. Reconstruction of ultrahigh-aspect-ratio crystalline bismuth-organic hybrid nanobelts for selective electrocatalytic CO2 reduction to formate. Adv. Funct. Mater. 2022, 32, 2201125.

[53]

He, Y. C.; Ma, D. D.; Zhou, S. H.; Zhang, M.; Tian, J. J.; Zhu, Q. L. Integrated 3D open network of interconnected bismuthene arrays for energy-efficient and electrosynthesis-assisted electrocatalytic CO2 reduction. Small 2022, 18, 2105246.

[54]

Liu, J. Z.; Li, Y. H.; Wang, Y. T.; Xiao, C. Q.; Liu, M. M.; Zhou, X. D.; Jiang, H.; Li, C. Z. Isolated ultrasmall Bi nanosheets for efficient CO2-to-formate electroreduction. Nano Res. 2022, 15, 1409–1414.

[55]

Duan, Y. X.; Zhou, Y. T.; Yu, Z.; Liu, D. X.; Wen, Z.; Yan, J. M.; Jiang, Q. Boosting production of HCOOH from CO2 electroreduction via Bi/CeOx. Angew. Chem., Int. Ed. 2021, 60, 8798–8802.

[56]

Yao, D. Z.; Tang, C.; Vasileff, A.; Zhi, X.; Jiao, Y.; Qiao, S. Z. The controllable reconstruction of Bi-MOFs for electrochemical CO2 reduction through electrolyte and potential mediation. Angew. Chem., Int. Ed. 2021, 60, 18178–18184.

[57]

Lan, B.; Wang, Q. L.; Ma, Z. X.; Wu, Y. J.; Jiang, X. L.; Jia, W. S.; Zhou, C. X.; Yang, Y. Y. Efficient electrochemical ethanol-to-CO2 conversion at rhodium and bismuth hydroxide interfaces. Appl. Catal. B:Environ. 2022, 300, 120728.

[58]

Sheng, W. C.; Kattel, S.; Yao, S. Y.; Yan, B. H.; Liang, Z. X.; Hawxhurst, C. J.; Wu, Q. Y.; Chen, J. G. G. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energ Environ Sci 2017, 10, 1180–1185.

[59]

Guo, S. Y.; Liu, Y. C.; Murphy, E.; Ly, A.; Xu, M. J.; Matanovic, I.; Pan, X. Q.; Atanassov, P. Robust palladium hydride catalyst for electrocatalytic formate formation with high CO tolerance. Appl. Catal. B:Environ. 2022, 316, 121659.

[60]

Tang, Q.; Lee, Y.; Li, D. Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, D. E. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 2017, 139, 9728–9736.

[61]

Chen, X.; Chen, S.; Huang, W.; Zheng, J. F.; Li, Z. L. Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes. Electrochim. Acta 2009, 54, 7370–7373.

[62]

Romann, T.; Lust, E. Electrochemical properties of porous bismuth electrodes. Electrochim. Acta 2010, 55, 5746–5752.

[63]

Li, L.; Ozden, A.; Guo, S. Y.; De Arquer, F. P. G.; Wang, C. H.; Zhang, M. Z.; Zhang, J.; Jiang, H. Y.; Wang, W.; Dong, H. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 2021, 12, 5223.

[64]

Pander III, J. E.; Baruch, M. F.; Bocarsly, A. B. Probing the mechanism of aqueous CO2 reduction on post-transition-metal electrodes using ATR-IR spectroelectrochemistry. ACS Catal. 2016, 6, 7824–7833.

File
12274_2022_5444_MOESM1_ESM.pdf (6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 October 2022
Revised: 11 December 2022
Accepted: 26 December 2022
Published: 28 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21203200 and 91545201) and the National Key Research and Development Program of China (Nos. 2017YFA0206802 and 2017YFA0700103). We gratefully acknowledge the State key Laboratory of structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences for support of characterization.

Return