Journal Home > Volume 16 , Issue 5

Metal-organic frameworks (MOFs), which are constructed by metal ions or clusters with organic ligands, have shown great potential in gas storage and separation, luminescence, catalysis, drug delivery, sensing, and so on. More than 20,000 MOFs have been reported by adjusting the composition and reaction conditions, and most of them were synthesized by hydrothermal or solvothermal methods. The conventional solvothermal methods are favorable for the slow crystallization of MOFs to obtain single crystals or highly crystalline powders, which are suitable for the structure analysis. However, their harsh synthesis conditions, long reaction time, and difficulty in continuous synthesis limit their scale-up in industrial production and application. Meanwhile, shaping or processing is also required to bring MOF crystals and powders into the market. Therefore, this review demonstrates the crystallization mechanisms of MOFs to understand how the synthetic parameters affect the final products. Additionally, a variety of promising synthetic routes which can be used for large scale synthesis were reviewed in details. Lastly, the prospects of MOF shaping and processing are provided to promote their industrial application.


menu
Abstract
Full text
Outline
About this article

Metal-organic frameworks: Synthetic methods for industrial production

Show Author's information Dou Ma1,2Xin Huang1Yu Zhang3Lu Wang1( )Bo Wang1,2( )
Frontiers Science Center for High Energy Material, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Ji’nan 250000, China
Beijing Institute of Technology Library, Beijing Institute of Technology, Beijing 100081, China

Abstract

Metal-organic frameworks (MOFs), which are constructed by metal ions or clusters with organic ligands, have shown great potential in gas storage and separation, luminescence, catalysis, drug delivery, sensing, and so on. More than 20,000 MOFs have been reported by adjusting the composition and reaction conditions, and most of them were synthesized by hydrothermal or solvothermal methods. The conventional solvothermal methods are favorable for the slow crystallization of MOFs to obtain single crystals or highly crystalline powders, which are suitable for the structure analysis. However, their harsh synthesis conditions, long reaction time, and difficulty in continuous synthesis limit their scale-up in industrial production and application. Meanwhile, shaping or processing is also required to bring MOF crystals and powders into the market. Therefore, this review demonstrates the crystallization mechanisms of MOFs to understand how the synthetic parameters affect the final products. Additionally, a variety of promising synthetic routes which can be used for large scale synthesis were reviewed in details. Lastly, the prospects of MOF shaping and processing are provided to promote their industrial application.

Keywords: metal-organic frameworks, synthetic methods, scale-up, crystallization mechanisms

References(137)

[1]

Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703–723.

[2]

Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.

[3]

Adil, K.; Belmabkhout, Y.; Pillai, R. S.; Cadiau, A.; Bhatt, P. M.; Assen, A. H.; Maurin, G.; Eddaoudi, M. Gas/vapour separation using ultra-microporous metal-organic frameworks: Insights into the structure/separation relationship. Chem. Soc. Rev. 2017, 46, 3402–3430.

[4]

Lin, R. B.; Xiang, S. C.; Xing, H. B.; Zhou, W.; Chen, B. L. Exploration of porous metal-organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87–103.

[5]

Cadiau, A.; Adil, K.; Bhatt, P. M.; Belmabkhout, Y.; Eddaoudi, M. A metal-organic framework-based splitter for separating propylene from propane. Science 2016, 353, 137–140.

[6]

Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1330–1352.

[7]

Yang, Q. H.; Xu, Q.; Jiang, H. L. Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chem. Soc. Rev. 2017, 46, 4774–4808.

[8]

Xiao, J. D.; Jiang, H. L. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 2019, 52, 356–366.

[9]

Sui, J.; Liu, H.; Hu, S. J.; Sun, K.; Wan, G.; Zhou, H.; Zheng, X.; Jiang, H. L. A general strategy to immobilize single-atom catalysts in metal-organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203.

[10]

Velásquez-Hernández, M. D. J.; Linares-Moreau, M.; Astria, E.; Carraro, F.; Alyami, M. Z.; Khashab, N. M.; Sumby, C. J.; Doonan, C. J.; Falcaro, P. Towards applications of bioentities@MOFs in biomedicine. Coord. Chem. Rev. 2021, 429, 213651.

[11]

Liang, W. B.; Wied, P.; Carraro, F.; Sumby, C. J.; Nidetzky, B.; Tsung, C. K.; Falcaro, P.; Doonan, C. J. Metal-organic framework-based enzyme biocomposites. Chem. Rev. 2021, 121, 1077–1129.

[12]

Peralta, R. A.; Huxley, M. T.; Evans, J. D.; Fallon, T.; Cao, H. J.; He, M. X.; Zhao, X. S.; Agnoli, S.; Sumby, C. J.; Doonan, C. J. Highly active gas phase organometallic catalysis supported within metal-organic framework pores. J. Am. Chem. Soc. 2020, 142, 13533–13543.

[13]

Lustig, W. P.; Mukherjee, S.; Rudd, N. D.; Desai, A. V.; Li, J.; Ghosh, S. K. Metal-organic frameworks: Functional luminescent and photonic materials for sensing applications. Chem. Soc. Rev. 2017, 46, 3242–3285.

[14]

Lamer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

[15]

Feng, L.; Wang, K. Y.; Powell, J.; Zhou, H. C. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 2019, 1, 801–824.

[16]

Sosso, G. C.; Chen, J.; Cox, S. J.; Fitzner, M.; Pedevilla, P.; Zen, A.; Michaelides, A. Crystal nucleation in liquids: Open questions and future challenges in molecular dynamics simulations. Chem. Rev. 2016, 116, 7078–7116.

[17]
Mullin, J. W. Crystallization, 4th ed.; Butterworth-Heinemann: Oxford, 2001.
[18]

Van Vleet, M. J.; Weng, T. T.; Li, X. Y.; Schmidt, J. R. In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth. Chem. Rev. 2018, 118, 3681–3721.

[19]

Karthika, S.; Radhakrishnan, T. K.; Kalaichelvi, P. A review of classical and nonclassical nucleation theories. Cryst. Growth Des. 2016, 16, 6663–6681.

[20]

Xu, H. Q.; Wang, K. C.; Ding, M. L.; Feng, D. W.; Jiang, H. L.; Zhou, H. C. Seed-mediated synthesis of metal-organic frameworks. J. Am. Chem. Soc. 2016, 138, 5316–5320.

[21]

Liu, S. Y.; Zhang, Y.; Meng, Y.; Gao, F.; Jiao, S. J.; Ke, Y. C. Fast syntheses of MOFs using nanosized zeolite crystal seeds in situ generated from microsized zeolites. Cryst. Growth Des. 2013, 13, 2697–2702.

[22]

Mitsuka, Y.; Nagashima, K.; Kobayashi, H.; Kitagawa, H. A seed-mediated spray-drying method for fcile syntheses of Zr-MOF and a pillared-layer-type MOF. Chem. Lett. 2016, 45, 1313–1315.

[23]

Lim, I. H.; Schrader, W.; Schüth, F. Insights into the molecularassembly of zeolitic imidazolate frameworks by ESI-MS. Chem. Mater. 2015, 27, 3088–3095.

[24]

Patterson, J. P.; Abellan, P.; Denny, M. S. Jr.; Park, C.; Browning, N. D.; Cohen, S. M.; Evans, J. E.; Gianneschi, N. C. Observing the growth of metal-organic frameworks by in situ liquid cell transmission electron microscopy. J. Am. Chem. Soc. 2015, 137, 7322–7328.

[25]

Liu, X. W.; Chee, S. W.; Raj, S.; Sawczyk, M.; Král, P.; Mirsaidov, U. Three-step nucleation of metal-organic framework nanocrystals. Proc. Natl. Acad. Sci. USA 2021, 118, e2008880118.

[26]

Xing, J. F.; Schweighauser, L.; Okada, S.; Harano, K.; Nakamura, E. Atomistic structures and dynamics of prenucleation clusters in MOF-2 and MOF-5 syntheses. Nat. Commun. 2019, 10, 3608.

[27]

Burton, W. K.; Cabrera, N.; Frank, F. C. The growth of crystals and the equilibrium structure of their surfaces. Philos. Trans. Roy. Soc. Ser. A Mathemat. Phys. Sci. 1951, 243, 299–358.

[28]
Cubillas, P.; Anderson, M. W. Zeolites and Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA, 2010; pp 1–55.
[29]

Lovette, M. A.; Browning, A. R.; Griffin, D. W.; Sizemore, J. P.; Snyder, R. C.; Doherty, M. F. Crystal shape engineering. Ind. Eng. Chem. Res. 2008, 47, 9812–9833.

[30]

Van Santen, R. A. The ostwald step rule. J. Phys. Chem. 1984, 88, 5768–5769.

[31]

Voorhees, P. W. The theory of ostwald ripening. J. Stat. Phys. 1985, 38, 231–252.

[32]

Venna, S. R.; Jasnski, J. B.; Carreon M. A. Structural evolution of zeolitic imidazolate framework-8. J. Am. Chem. Soc. 2010, 132, 18030–18033.

[33]

De Yoreo, J. J.; Gilbert, P. U. P. A.; Sommerdijk, N. A. J. M.; Penn, R. L.; Whitelam, S.; Joester, D.; Zhang, H. Z.; Rimer, J. D.; Navrotsky, A.; Banfield, J. F. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760.

[34]

Han, J. L.; He, X. D.; Liu, J.; Ming, R. J.; Lin, M. H.; Li, H.; Zhou, X. C.; Deng, H. X. Determining factors in the growth of MOF single crystals unveiled by in situ interface imaging. Chem 2022, 8, 1637–1657.

[35]

Seoane, B.; Castellanos, S.; Dikhtiarenko, A.; Kapteijn, F.; Gascon, J. Multi-scale crystal engineering of metal organic frameworks. Coord. Chem. Rev. 2016, 307, 147–187.

[36]

Chin, J. M.; Chen, E. Y.; Menon, A. G.; Tan, H. Y.; Hor, A. T. S.; Schreyer, M. K.; Xu, J. W. Tuning the aspect ratio of NH2-MIL-53(Al) microneedles and nanorodsvia coordination modulation. CrystEngComm 2013, 15, 654–657.

[37]

Cravillon, J.; Nayuk, R.; Springer, S.; Feldhoff, A.; Huber, K.; Wiebcke, M. Controlling zeolitic imidazolate framework nano- and microcrystal formation: Insight into crystal growth by time-resolved in situ static light scattering. Chem. Mater. 2011, 23, 2130–2141.

[38]

Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated synthesis of Zr-based metal-organic frameworks: From nano to single crystals. Chem. —Eur. J. 2011, 17, 6643–6651.

[39]

Bentz, K. C.; Ayala, S.; Kalaj, M.; Cohen, S. M.; Bentz, K. C.; Ayala, S.; Kalaj, M.; Cohen, S. M. Polyacids as modulators for the synthesis of UiO-66. Aust. J. Chem. 2019, 72, 848–851.

[40]

Gong, X.; Shu, Y. F.; Jiang, Z.; Lu, L. X.; Xu, X. H.; Wang, C.; Deng, H. X. Metal-organic frameworks for the exploitation of distance between active sites in efficient photocatalysis. Angew. Chem., Int. Ed. 2020, 59, 5326–5331.

[41]

Liu, X. Y.; Liu, B.; Li, G. H.; Liu, Y. L. Two anthracene-based metal-organic frameworks for highly effective photodegradation and luminescent detection in water. J. Mater. Chem. A 2018, 6, 17177–17185.

[42]

Henkelis, S. E.; Vornholt, S. M.; Cordes, D. B.; Slawin, A. M. Z.; Wheatley, P. S.; Morris, R. E. A single crystal study of CPO-27 and UTSA-74 for nitric oxide storage and release. CrystEngComm 2019, 21, 1857–1861.

[43]

Umemura, A.; Diring, S.; Furukawa, S.; Uehara, H.; Tsuruoka, T.; Kitagawa, S. Morphology design of porous coordination polymer crystals by coordination modulation. J. Am. Chem. Soc. 2011, 133, 15506–15513.

[44]

Chen, Y. F.; Zhang, S. H.; Chen, F.; Cao, S. J.; Cai, Y.; Li, S. Q.; Ma, H. W.; Ma, X. J.; Li, P. F.; Huang, X. Q. et al. Defect engineering of highly stable lanthanide metal-organic frameworks by particle modulation for coating catalysis. J. Mater. Chem. A 2018, 6, 342–348.

[45]

Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. J. Am. Chem. Soc. 2013, 135, 10525–10532.

[46]

Cai, G. R.; Jiang, H. L. A modulator-induced defect-formation strategy to hierarchically porous metal-organic frameworks with high stability. Angew. Chem., Int. Ed. 2017, 56, 563–567.

[47]

Ma, X.; Wang, L.; Zhang, Q.; Jiang, H. L. Switching on the photocatalysis of metal-organic frameworks by engineering structural defects. Angew. Chem., Int. Ed. 2019, 58, 12175–12179.

[48]

Feng, X.; Hajek, J.; Jena, H. S.; Wang, G. B.; Veerapandian, S. K. P.; Morent, R.; De Geyter, N.; Leyssens, K.; Hoffman, A. E. J.; Meynen, V. et al. Engineering a highly defective stable UiO-66 with tunable Lewis-Bronsted acidity: The role of the hemilabile linker. J. Am. Chem. Soc. 2020, 142, 3174–3183.

[49]

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

[50]

Howarth, A. J.; Peters, A. W.; Vermeulen, N. A.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Best practices for the synthesis, activation, and characterization of metal-organic frameworks. Chem. Mater. 2017, 29, 26–39.

[51]

Cohen, S. M. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem. Rev. 2012, 112, 970–1000.

[52]

Rabenau, A. The role of hydrothermal synthesis in preparative chemistry. Angew. Chem., Int. Ed. 1985, 24, 1026–1040.

[53]

Burrows, A. D.; Cassar, K.; Düren, T.; Friend, R. M.; Mahon, M. F.; Rigby, S. P.; Savarese, T. L. Syntheses, structures and properties of cadmium benzenedicarboxylate metal-organic frameworks. Dalton Trans. 2008, 2465–2474.

[54]

Rowsell, J. L. C.; Yaghi, O. M. Metal-organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3–14.

[55]

Deng, H. X.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gándara, F.; Whalley, A. C.; Liu, Z.; Asahina, S. et al. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023.

[56]

Ojha, R. P.; Lemieux, P. A.; Dixon, P. K.; Liu, A. J.; Durian, D. J. Statistical mechanics of a gas-fluidized particle. Nature 2004, 427, 521–523.

[57]

Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

[58]

Kandiah, M.; Nilsen, M. H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E. A.; Bonino, F.; Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640.

[59]

Zou, L. F.; Feng, D. W.; Liu, T. F.; Chen, Y. P.; Yuan, S.; Wang, K. C.; Wang, X.; Fordham, S.; Zhou, H. C. A versatile synthetic route for the preparation of titanium metal-organic frameworks. Chem. Sci. 2016, 7, 1063–1069.

[60]

Andreo, J.; Priola, E.; Alberto, G.; Benzi, P.; Marabello, D.; Proserpio, D. M.; Lamberti, C.; Diana, E. Autoluminescent metal-organic frameworks (MOFs): Self-photoemission of a highly stable thorium MOF. J. Am. Chem. Soc. 2018, 140, 14144–14149.

[61]

Sanii, R.; Hua, C.; Patyk-Kaźmierczak, E.; Zaworotko, M. J. Solvent-directed control over the topology of entanglement in square lattice (sql) coordination networks. Chem. Commun. 2019, 55, 1454–1457.

[62]

Xie, L. S.; Alexandrov, E. V.; Skorupskii, G.; Proserpio, D. M.; Dincă, M. Diverse π-π stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal-organic frameworks. Chem. Sci. 2019, 10, 8558–8565.

[63]

Muldoon, P. F.; Liu, C.; Miller, C. C.; Koby, S. B.; Jarvi, A. G.; Luo, T. Y.; Saxena, S.; O'Keeffe, M.; Rosi, N. L. Programmable topology in new families of heterobimetallic metal-organic frameworks. J. Am. Chem. Soc. 2018, 140, 6194–6198.

[64]

Fischer, S.; Roeser, J.; Lin, T. C.; DeBlock, R. H.; Lau, J.; Dunn, B. S.; Hoffmann, F.; Frçba, M.; Thomas, A.; Tolbert, S. H. A metal-organic framework with tetrahedral aluminate sites as a single-ion Li+ solid electrolyte. Angew. Chem., Int. Ed. 2018, 57, 16683–16687.

[65]

Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480.

[66]

Lidström, P.; Tierney, J.; Wathey, B.; Westman J. Microwave assisted organic synthesis: A review. Tetrahedron 2001, 57, 9225–9283.

[67]

Jhung, S. H.; Lee, J. H.; Chang, J. S. Microwave synthesis of a nanoporius hybrid material, chromium trimesate. Bull. Korean Chem. Soc. 2005, 26, 880–881.

[68]

Choi, J. S.; Son, W. J.; Kim, J.; Ahn, W. S. Metal-organic framework MOF-5 prepared by microwave heating: Factors to be considered. Microporous Mesoporous Mater. 2008, 116, 727–731.

[69]

Son, W. J.; Kim, J.; Kim, J.; Ahn, W. S. Sonochemical synthesis of MOF-5. Chem. Commun. 2008, 6336–6338.

[70]

Li, M. Y.; Dincă, M. Reductive electrosynthesis of crystalline metal-organic frameworks. J. Am. Chem. Soc. 2011, 133, 12926–12929.

[71]

Chen, Y. F.; Li, S. Q.; Pei, X. K.; Zhou, J. W.; Feng, X.; Zhang, S. H.; Cheng, Y. Y.; Li, H. W.; Han, R. D.; Wang, B. A solvent-free hot-pressing method for preparing metal-organic-framework coatings. Angew. Chem., Int. Ed. 2016, 55, 3419–3423.

[72]

McKinstry, C.; Cathcart, R. J.; Cussen, E. J.; Fletcher, A. J.; Patwardhan, S. V.; Sefcik, J. Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystals. Chem. Eng. J. 2016, 285, 718–725.

[73]

Seo, Y. K.; Hundal, G.; Jang, I. T.; Hwang, Y. K.; Jun, C. H.; Chang, J. S. Microwave synthesis of hybrid inorganic-organic materials including porous Cu3(BTC)2 from Cu(II)-trimesate mixture. Microporous Mesoporous Mater. 2009, 119, 331–337.

[74]

Li, Z. Q.; Qiu, L. G.; Xu, T.; Wu, Y.; Wang, W.; Wu, Z. Y.; Jiang, X. Ultrasonic synthesis of the microporous metal-organic framework Cu3(BTC)2 at ambient temperature and pressure: An efficient and environmentally friendly method. Mater. Lett. 2009, 63, 78–80.

[75]

Nawrocki, J.; Prochowicz, D.; Wiśniewski, A.; Justyniak, I.; Goś, P.; Lewiński, J. Development of an SBU-based mechanochemical approach for drug-loaded MOFs. Eur. J. Inorg. Chem. 2020, 2020, 796–800.

[76]

Crawford, D.; Casaban, J.; Haydon, R.; Giri, N.; McNally, T.; James, S. L. Synthesis by extrusion: Continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 2015, 6, 1645–1649.

[77]

Carné-Sánchez, A.; Imaz, I.; Cano-Sarabia, M.; Maspoch, D. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures. Nat. Chem. 2013, 5, 203–211.

[78]

Ameloot, R.; Vermoortele, F.; Vanhove, W.; Roeffaers, M. B. J.; Sels, B. F.; De Vos, D. E. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nat. Chem. 2011, 3, 382–387.

[79]

Yang, D. A.; Cho, H. Y.; Kim, J.; Yang, S. T.; Ahn, W. S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 2012, 5, 6465–6473.

[80]

Wu, X. F.; Bao, Z. B.; Yuan, B.; Wang, J.; Sun, Y. Q.; Luo, H. M.; Deng, S. G. Microwave synthesis and characterization of MOF-74 (M = Ni, Mg) for gas separation. Microporous Mesoporous Mater. 2013, 180, 114–122.

[81]

Ayoub, G.; Karadeniz, B.; Howarth, A. J.; Farha, O. K.; Đilović, I.; Germann, L. S.; Dinnebier, R. E.; Užarević, K.; Friščić, T. Rational synthesis of mixed-metal microporous metal-organic frameworks with controlled composition using mechanochemistry. Chem. Mater. 2019, 31, 5494–5501.

[82]

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

[83]

Karadeniz, B.; Howarth, A. J.; Stolar, T.; Islamoglu, T.; Dejanović, I.; Tireli, M.; Wasson, M. C.; Moon, S. Y.; Farha, O. K.; Friščić, T. et al. Benign by design: Green and scalable synthesis of zirconium UiO-metal-organic frameworks by water-assisted mechanochemistry. ACS Sustainable Chem. Eng. 2018, 6, 15841–15849.

[84]

Avci-Camur, C.; Troyano, J.; Pérez-Carvajal, J.; Legrand, A.; Farrusseng, D.; Imaz, I.; Maspoch, D. Aqueous production of spherical Zr-MOF beads via continuous-flow spray-drying. Green Chem. 2018, 20, 873–878.

[85]

Taddei, M.; Steitz, D. A.; Van Bokhoven, J. A.; Ranocchiari, M. Continuous-flow microwave synthesis of metal-organic frameworks: A highly efficient method for large-scale production. Chem. —Eur. J. 2016, 22, 3245–3249.

[86]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

[87]

Chaemchuen, S.; Zhou, K.; Mousavi, B.; Ghadamyari, M.; Heynderickx, P. M.; Zhuiykov, S.; Yusubov, M. S.; Verpoort, F. Spray drying of zeolitic imidazolate frameworks: Investigation of crystal formation and properties. CrystEngComm 2018, 20, 3601–3608.

[88]

Polyzoidis, A.; Altenburg, T.; Schwarzer, M.; Loebbecke, S.; Kaskel, S. Continuous microreactor synthesis of ZIF-8 with high space-time-yield and tunable particle size. Chem. Eng. J. 2016, 283, 971–977.

[89]

Laybourn, A.; Katrib, J.; Ferrari-John, R. S.; Morris, C. G.; Yang, S. H.; Udoudo, O.; Easun, T. L.; Dodds, C.; Champness, N. R.; Kingman, S. W. et al. Metal-organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 2017, 5, 7333–7338.

[90]

Ni, Z.; Masel, R. I. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 2006, 128, 12394–12395.

[91]

Liu, B. T.; He, Y. P.; Han, L. P.; Singh, V.; Xu, X. N.; Guo, T.; Meng, F. Y.; Xu, X.; York, P.; Liu, Z. X. et al. Microwave-assisted rapid synthesis of γ-cyclodextrin metal-organic frameworks for size control and efficient drug loading. Cryst. Growth Des. 2017, 17, 1654–1660.

[92]

Jiang, Z. W.; Zou, Y. C.; Zhao, T. T.; Zhen, S. J.; Li, Y. F.; Huang, C. Z. Controllable synthesis of porphyrin-based 2D lanthanide metal-organic frameworks with thickness- and metal-node-dependent photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 3300–3306.

[93]

Haque, E.; Khan, N. A.; Park, J. H.; Jhung, S. H. Synthesis of a metal-organic framework material, iron terephthalate, by ultrasound, microwave, and conventional electric heating: A kinetic study. Chem. —Eur. J. 2010, 16, 1046–1052.

[94]

Dreischarf, A. C.; Lammert, M.; Stock, N.; Reinsch, H. Green synthesis of Zr-CAU-28: Structure and properties of the first Zr-MOF based on 2, 5-furandicarboxylic acid. Inorg. Chem. 2017, 56, 2270–2277.

[95]

Jacobsen, J.; Achenbach, B.; Reinsch, H.; Smolders, S.; Lange, F. D.; Friedrichs, G.; De Vos, D.; Stock, N. The first water-based synthesis of Ce(IV)-MOFs with saturated chiral and achiral C4-dicarboxylate linkers. Dalton Trans. 2019, 48, 8433–8441.

[96]

Lee, Y. R.; Kim, J.; Ahn, W. S. Synthesis of metal-organic frameworks: A mini review. Korean J. Chem. Eng. 2013, 30, 1667–1680.

[97]

Suslick, K. S.; Hammerton, D. A.; Cline, R. E. Jr. Sonochemical hot spot. J. Am. Chem. Soc. 1986, 108, 5641–5642.

[98]

Qiu, L. G.; Li, Z. Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X. Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun. 2008, 3642–3644.

[99]

Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem. 2019, 52, 106–119.

[100]

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

[101]

Li, C.; Hu, X. S.; Tong, W.; Yan, W. S.; Lou, X. B.; Shen, M.; Hu, B. W. Ultrathin manganese-based metal-organic framework nanosheets: Low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl. Mater. Interfaces 2017, 9, 29829–29838.

[102]

Ning, Y. Q.; Lou, X. B.; Li, C.; Hu, X. S.; Hu, B. W. Ultrathin cobalt-based metal-organic framework nanosheets with both metal and ligand redox activities for superior lithium storage. Chem. —Eur. J. 2017, 23, 15984–15990.

[103]

Yuan, M. W.; Wang, R.; Fu, W. B.; Lin, L.; Sun, Z. M.; Long, X. G.; Zhang, S. T.; Nan, C. Y.; Sun, G. B.; Li, H. F. et al. Ultrathin two-dimensional metal-organic framework nanosheets with the inherent open active sites as electrocatalysts in aprotic Li-O2 batteries. ACS Appl. Mater. Interfaces 2019, 11, 11403–11413.

[104]

Kim, J.; Yang, S. T.; Choi, S. B.; Sim, J.; Kim, J.; Ahn, W. S. Control of catenation in CuTATB-n metal-organic frameworks by sonochemical synthesis and its effect on CO2 adsorption. J. Mater. Chem. 2011, 21, 3070–3076.

[105]

Li, J. X.; Li, Y. H.; Qin, Z. B.; Dong, G. Y. Ultrasound assisted synthesis of a zinc(II) coordination polymer with nano-flower morphology and the use as precursor for zinc(II) oxide nanoparticles. Polyhedron 2018, 155, 94–101.

[106]
Mueller, U.; Puetter, H.; Hesse, M.; Wessel, H.W. Method for electrochemical production of a crystalline porous metal organic skeleton material. WO 2005/049892, February 6, 2005.
[107]

Wei, J. Z.; Wang, X. L.; Sun, X. J.; Hou, Y.; Zhang, X.; Yang, D. D.; Dong, H.; Zhang, F. M. Rapid and large-scale synthesis of IRMOF-3 by electrochemistry method with enhanced fluorescence detection performance for TNP. Inorg. Chem. 2018, 57, 3818–3824.

[108]

Wei, J. Z.; Gong, F. X.; Sun, X. J.; Li, Y.; Zhang, T.; Zhao, X. J.; Zhang, F. M. Rapid and low-cost electrochemical synthesis of UiO-66-NH2 with enhanced fluorescence detection performance. Inorg. Chem. 2019, 58, 6742–6747.

[109]

Kang, X. C.; Lyu, K.; Li, L. L.; Li, J. N.; Kimberley, L.; Wang, B.; Liu, L. F.; Cheng, Y. Q.; Frogley, M. D.; Rudić, S. et al. Integration of mesopores and crystal defects in metal-organic frameworks via templated electrosynthesis. Nat. Commun. 2019, 10, 4466.

[110]

Li, W. J.; Tu, M.; Cao, R.; Fischer, R. A. Metal-organic framework thin films: Electrochemical fabrication techniques and corresponding applications & perspectives. J. Mater. Chem. A 2016, 4, 12356–12369.

[111]

Li, W. J.; Lü, J.; Gao, S. Y.; Li, Q. H.; Cao, R. Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives. J. Mater. Chem. A 2014, 2, 19473–19478.

[112]

Li, M. Y.; Dincă, M. Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition. Chem. Sci. 2014, 5, 107–111.

[113]

Liu, Y. X.; Wei, Y. N.; Liu, M. H.; Bai, Y. C.; Wang, X. Y.; Shang, S. C.; Chen, J. Y.; Liu, Y. Q. Electrochemical synthesis of large area two-dimensional metal-organic framework films on copper anodes. Angew. Chem., Int. Ed. 2021, 60, 2887–2891.

[114]

Zhou, S.; Shekhah, O.; Jia, J. T.; Czaban-Jóźwiak, J.; Bhatt, P. M.; Ramírez, A.; Gascon, J.; Eddaoudi, M. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons. Nat. Energy 2021, 6, 882–891.

[115]

Pichon, A.; Lazuen-Garay, A.; James, S. L. Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm 2006, 8, 211–214.

[116]

Li, R.; Ren, X. Q.; Zhao, J. S.; Feng, X.; Jiang, X.; Fan, X. X.; Lin, Z. G.; Li, X. G.; Hu, C. W.; Wang, B. Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. J. Mater. Chem. A 2014, 2, 2168–2173.

[117]

Fidelli, A. M.; Karadeniz, B.; Howarth, A. J.; Huskić, I.; Germann, L. S.; Halasz, I.; Etter, M.; Moon, S. Y.; Dinnebier, R. E.; Stilinović, V. et al. Green and rapid mechanosynthesis of high-porosity NU- and UiO-type metal-organic frameworks. Chem. Commun. 2018, 54, 6999–7002.

[118]

Karadeniz, B.; Žilić, D.; Huskić, I.; Germann, L. S.; Fidelli, A. M.; Muratović, S.; Lončarić, I.; Etter, M.; Dinnebier, R. E.; Barišić, D. et al. Controlling the polymorphism and topology transformation in porphyrinic zirconium metal-organic frameworks via mechanochemistry. J. Am. Chem. Soc. 2019, 141, 19214–19220.

[119]

Lee, H. K.; Lee, J. H.; Moon, H. R. Mechanochemistry as a reconstruction tool of decomposed metal-organic frameworks. Inorg. Chem. 2021, 60, 11825–11829.

[120]

Crawford, D. E.; Casaban, J. Recent developments in mechanochemical materials synthesis by extrusion. Adv. Mater. 2016, 28, 5747–5754.

[121]

Darwish, S.; Wang, S. Q.; Croker, D. M.; Walker, G. M.; Zaworotko, M. J. Comparison of mechanochemistry vs solution methods for synthesis of 4,4'-bipyridine-based coordination polymers. ACS Sustainable Chem. Eng. 2019, 7, 19505–19512.

[122]

Abramova, A.; Couzon, N.; Leloire, M.; Nerisson, P.; Cantrel, L.; Royer, S.; Loiseau, T.; Volkringer, C.; Dhainaut, J. Extrusion-spheronization of UiO-66 and UiO-66_NH2 into robust-shaped solids and their use for gaseous molecular iodine, xenon, and krypton adsorption. ACS Appl. Mater. Interfaces 2022, 14, 10669–10680.

[123]

Quan, Y. F.; Shen, R. Q.; Ma, R.; Zhang, Z. R.; Wang, Q. S. Sustainable and efficient manufacturing of metal-organic framework-based polymer nanocomposites by reactive extrusion. ACS Sustainable Chem. Eng. 2022, 10, 7216–7222.

[124]

Ma, X. J.; Chai, Y. T.; Li, P.; Wang, B. Metal-organic framework films and their potential applications in environmental pollution control. Acc. Chem. Res. 2019, 1461–1470.

[125]

Chen, Y. F.; Zhang, S. H.; Cao, S. J.; Li, S. Q.; Chen, F.; Yuan, S.; Xu, C.; Zhou, J. W.; Feng, X.; Ma, X. J. et al. Roll-to-roll production of metal-organic framework coatings for particulate matter removal. Adv. Mater. 2017, 29, 1606221.

[126]

Tang, Y. J.; Chen, Y. F.; Zhu, H. J.; Zhang, A. M.; Wang, X. L.; Dong, L. Z.; Li, S. L.; Xu, Q.; Lan, Y. Q. Solid-phase hot-pressing synthesis of POMOFs on carbon cloth and derived phosphides for all pH value hydrogen evolution. J. Mater. Chem. A 2018, 6, 21969–21977.

[127]

Li, G. P.; Cao, F.; Zhang, K.; Hou, L.; Gao, R. C.; Zhang, W. Y.; Wang, Y. Y. Design of anti-UV radiation textiles with self-assembled metal-organic framework coating. Adv. Mater. Interfaces 2020, 7, 1901525.

[128]

Li, P.; Li, J. Z.; Feng, X.; Li, J.; Hao, Y. C.; Zhang, J. W.; Wang, H.; Yin, A. X.; Zhou, J. W.; Ma, X. J. et al. Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning. Nat. Commun. 2019, 10, 2177.

[129]

Wang, H.; Zhao, S.; Liu, Y.; Yao, R. X.; Wang, X. Q.; Cao, Y. H.; Ma, D.; Zou, M. C.; Cao, A. Y.; Feng, X. et al. Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations. Nat. Commun. 2019, 10, 4204.

[130]

Gauvin, W. H.; Katta, S. Basic concepts of spray dryer design. AIChE J. 1976, 22, 713–724.

[131]

Garzón-Tovar, L.; Cano-Sarabia, M.; Carné-Sánchez, A.; Carbonell, C.; Imaz, I.; Maspoch, D. A spray-drying continuous-flow method for simultaneous synthesis and shaping of microspherical high nuclearity MOF beads. React. Chem. Eng. 2016, 1, 533–539.

[132]

Avci, C.; De Marco, M. L.; Byun, C.; Perrin, J.; Scheel, M.; Boissière, C.; Faustini, M. Metal-organic framework photonic balls: Single object analysis for local thermal probing. Adv. Mater. 2021, 33, 2104450.

[133]

Sun, J. Z.; Kwon, H. T.; Jeong, H. K. Continuous synthesis of high quality metal-organic framework HKUST-1 crystals and composites via aerosol-assisted synthesis. Polyhedron 2018, 153, 226–233.

[134]

Stassen, I.; Styles, M.; Grenci, G.; Van Gorp, H.; Vanderlinden, W.; De Feyter, S.; Falcaro, P.; De Vos, D.; Vereecken, P.; Ameloot, R. Chemical vapour deposition of zeolitic imidazolate framework thin films. Nat. Mater. 2016, 15, 304–310.

[135]

Britton, J.; Jamison, T. F. The assembly and use of continuous flow systems for chemical synthesis. Nat. Protoc. 2017, 12, 2423–2446.

[136]

Albuquerque, G. H.; Fitzmorris, R. C.; Ahmadi, M.; Wannenmacher, N.; Thallapally, P. K.; McGrail, B. P.; Herman, G. S. Gas-liquid segmented flow microwave-assisted synthesis of MOF-74(Ni) under moderate pressures. CrystEngComm 2015, 17, 5502–5510.

[137]

Liu, X. M.; Xie, L. H.; Wu, Y. F. Recent advances in the shaping of metal-organic frameworks. Inorg. Chem. Front. 2020, 7, 2840–2866.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 October 2022
Revised: 29 November 2022
Accepted: 27 December 2022
Published: 10 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21971017, 21901019, and 22205018), the National Key Research and Development Program of China (No. 2020YFB1506300), and Beijing Institute of Technology Research Fund Program. The authors acknowledge the Analysis and Testing Center of BIT for technical supports.

Return