Journal Home > Volume 16 , Issue 5

Advances in thin film light-emitting devices have fueled the rapid growth of a new class of solid-state lighting devices, featuring low fabrication cost, high quantum efficiency, and broadband spectrum coverage, etc. In contrast to the conventional inorganic semiconductors that rely on lattice matched high crystalline quality substrate, solution processable thin films eliminate the dependence on the substrate, which is highly desired for the ease and versatility of integrations with foreign medium. By taking this advantage, this work developed an ultracompact solution to control the directionality of thin film emitters using integrated dielectric metasurface through one step spin-coating process. As a proof of concept, directional emissions from perovskite nanocrystal thin film, including collimated light emissions and two-dimensional beam steering, are experimentally demonstrated. Notably, our approach, where light emitters were integrated on the back side of substrate after the fabrication of metasurface, judiciously avoids any potential degradation of material optical quality caused by the multi-step nanofabrication. Therefore, it can serve as a generalized scheme to engage the advantageous properties of dielectric metasurface, including the compactness, high efficiency, and beam controllability with the emerging thin film light-emitting diodes (LEDs), which is applicable to a wide range of solution processable materials, including organic light-emitting diodes, quantum-dot light emitting diodes, polymer LEDs, and perovskite LEDs, opening up new pathways to develop low-cost and ultra-compact solid state light sources with versatile beams characteristics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Directional emissions from perovskite nanocrystals thin film enabled by metasurface integration through one step spin-coating process

Show Author's information Kexue Li1,§Xuanyu Zhang2,§Peinan Ni3,§Juncheng Liu1Fengyuan Lin1Xu Man1Wenfeng Cai2Jianxun Liu2Yanjun Liu2Rui Chen2Zhipeng Wei1( )
State Key Laboratory of High Power Semiconductor Laser, School of physics, Changchun University of Science and Technology, Changchun 130022, China
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Photonics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, SE-41296, Sweden

§ Kexue Li, Xuanyu Zhang, and Peinan Ni contributed equally to this work.

Abstract

Advances in thin film light-emitting devices have fueled the rapid growth of a new class of solid-state lighting devices, featuring low fabrication cost, high quantum efficiency, and broadband spectrum coverage, etc. In contrast to the conventional inorganic semiconductors that rely on lattice matched high crystalline quality substrate, solution processable thin films eliminate the dependence on the substrate, which is highly desired for the ease and versatility of integrations with foreign medium. By taking this advantage, this work developed an ultracompact solution to control the directionality of thin film emitters using integrated dielectric metasurface through one step spin-coating process. As a proof of concept, directional emissions from perovskite nanocrystal thin film, including collimated light emissions and two-dimensional beam steering, are experimentally demonstrated. Notably, our approach, where light emitters were integrated on the back side of substrate after the fabrication of metasurface, judiciously avoids any potential degradation of material optical quality caused by the multi-step nanofabrication. Therefore, it can serve as a generalized scheme to engage the advantageous properties of dielectric metasurface, including the compactness, high efficiency, and beam controllability with the emerging thin film light-emitting diodes (LEDs), which is applicable to a wide range of solution processable materials, including organic light-emitting diodes, quantum-dot light emitting diodes, polymer LEDs, and perovskite LEDs, opening up new pathways to develop low-cost and ultra-compact solid state light sources with versatile beams characteristics.

Keywords: solid state light source, metasurface integrations, on-chip beam shaping, beam steering, perovskite light-emitting diodes (LEDs)

References(34)

[1]

De Almeida, A.; Santos, B.; Paolo, B.; Quicheron, M. Solid state lighting review—Potential and challenges in Europe. Renewable Sustainable Energy Rev. 2014, 34, 30–48.

[2]

Crawford, M. H. LEDs for solid-state lighting: Performance challenges and recent advances. IEEE J. Sel. Top. Quantum Electron. 2009, 15, 1028–1040.

[3]

Gather, M. C.; Köhnen, A.; Meerholz, K. White organic light-emitting diodes. Adv. Mater. 2011, 23, 233–248.

[4]

Zhang, X. S.; Chen, Y. J.; Lian, L. Y.; Zhang, Z. Z.; Liu, Y. X.; Song, L.; Geng, C.; Zhang, J. B.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628–634.

[5]

Giovanella, U.; Pasini, M.; Lorenzon, M.; Galeotti, F.; Lucchi, C.; Meinardi, F.; Luzzati, S.; Dubertret, B.; Brovelli, S. Efficient solution-processed nanoplatelet-based light-emitting diodes with high operational stability in air. Nano Lett. 2018, 18, 3441–3448.

[6]

Li, Y.; Wang, X. Y.; Xue, W. N.; Wang, W.; Zhu, W.; Zhao, L. J. Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785–789.

[7]

Xiao, Z. G.; Kerner, R. A.; Zhao, L. F.; Tran, N. L.; Lee, K. M.; Koh, T. W.; Scholes, G. D.; Rand, B. P. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 2017, 11, 108–115.

[8]

Cao, Y.; Wang, N. N.; Tian, H.; Guo, J. S.; Wei, Y. Q.; Chen, H.; Miao, Y. F.; Zou, W.; Pan, K.; He, Y. R. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 2018, 562, 249–253.

[9]

Li, R. X.; Li, B. B.; Fang, X.; Wang, D. K.; Shi, Y. Q.; Liu, X.; Chen, R.; Wei, Z. P. Self-structural healing of encapsulated perovskite microcrystals for improved optical and thermal stability. Adv. Mater. 2021, 33, 2100466.

[10]

Karunatilaka, D.; Zafar, F.; Kalavally, V.; Parthiban, R. LED based indoor visible light communications: State of the art. IEEE Commun. Surv. Tutorials 2015, 17, 1649–1678.

[11]

Fu, X. Y.; Mehta, Y.; Chen, Y. A.; Lei, L.; Zhu, L. P.; Barange, N.; Dong, Q.; Yin, S. C.; Mendes, J.; He, S. L. et al. Directional polarized light emission from thin-film light-emitting diodes. Adv. Mater. 2021, 33, 2006801.

[12]

Taki, T.; Strassburg, M. Review-visible LEDs: More than efficient light. ECS J. Solid State Sci. Technol. 2020, 9, 015017.

[13]

Yu, N. F.; Genevet, P.; Kats, M. A.; Aieta, F.; Tetienne, J. P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337.

[14]

Lin, D. M.; Fan, P. Y.; Hasman, E.; Brongersma, M. L. Dielectric gradient metasurface optical elements. Science 2014, 345, 298–302.

[15]

Yang, J. Y.; Gurung, S.; Bej, S.; Ni, P. N.; Lee, H. W. H. Active optical metasurfaces: Comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 2022, 85, 036101.

[16]

Liu, J. Y.; Duan, Y. P.; Zhang, T.; Huang, L. X.; Pang, H. F. Dual-polarized and real-time reconfigurable metasurface absorber with infrared-coded remote-control system. Nano Res. 2022, 15, 7498–7505.

[17]

Brière, G.; Ni, P. N.; Héron, S.; Chenot, S.; Vézian, S.; Brändli, V.; Damilano, B.; Duboz, J. Y.; Iwanaga, M.; Genevet, P. An etching-free approach toward large-scale light-emitting metasurfaces. Adv. Opt. Mater. 2019, 7, 1801271.

[18]

Yu, N. F.; Aieta, F.; Genevet, P.; Kats, M. A.; Gaburro, Z.; Capasso, F. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett. 2012, 12, 6328–6333.

[19]

Wang, L.; Kruk, S.; Koshelev, K.; Kravchenko, I.; Luther-Davies, B.; Kivshar, Y. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett. 2018, 18, 3978–3984.

[20]

Teng, S. Y.; Zhang, Q.; Wang, H.; Liu, L. X.; Lv, H. R. Conversion between polarization states based on a metasurface. Photon. Res. 2019, 7, 246–250.

[21]

Xie, Y. Y.; Ni, P. N.; Wang, Q. H.; Kan, Q.; Briere, G.; Chen, P. P.; Zhao, Z. Z.; Delga, A.; Ren, H. R.; Chen, H. D. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 2020, 15, 125–130.

[22]

Ni, P. N.; De Luna Bugallo, A.; Arellano Arreola, V. M.; Salazar, M. F.; Strupiechonski, E.; Brändli, V.; Sawant, R.; Alloing, B.; Genevet, P. Gate-tunable emission of exciton-plasmon polaritons in hybrid MoS2-gap-mode metasurfaces. ACS Photonics 2019, 6, 1594–1601.

[23]

Park, Y.; Kim, J.; Cho, K. S.; Kim, H.; Lee, M. K.; Lee, J. S.; Kim, U. J.; Hwang, S. W.; Brongersma, M. L.; Roh, Y. G. et al. Metasurface electrode light emitting diodes with planar light control. Sci. Rep. 2017, 7, 14753.

[24]

Mao, P.; Liu, C. X.; Li, X. Y.; Liu, M. X.; Chen, Q.; Han, M.; Maier, S. A.; Sargent, E. H.; Zhang, S. Single-step-fabricated disordered metasurfaces for enhanced light extraction from LEDs. Light Sci. Appl. 2021, 10, 180.

[25]

Iyer, P. P.; DeCrescent, R. A.; Mohtashami, Y.; Lheureux, G.; Butakov, N. A.; Alhassan, A.; Weisbuch, C.; Nakamura, S.; DenBaars, S. P.; Schuller, J. A. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photonics 2020, 14, 543–548.

[26]

Khaidarov, E.; Liu, Z. T.; Paniagua-Domínguez, R.; Ha, S. T.; Valuckas, V.; Liang, X. N.; Akimov, Y.; Bai, P.; Png, C. E.; Demir, H. V. et al. Control of LED emission with functional dielectric metasurfaces. Laser Photonics Rev. 2020, 14, 1900235.

[27]

Liu, S.; Vaskin, A.; Addamane, S.; Leung, B.; Tsai, M. C.; Yang, Y. M.; Vabishchevich, P. P.; Keeler, G. A.; Wang, G.; He, X. W. et al. Light-emitting metasurfaces: Simultaneous control of spontaneous emission and far-field radiation. Nano Lett. 2018, 18, 6906–6914.

[28]

Dai, W.; Wang, Y. J.; Li, R. X.; Fan, Y. B.; Qu, G. Y.; Wu, Y. K.; Song, Q. H.; Han, J. C.; Xiao, S. M. Achieving circularly polarized surface emitting perovskite microlasers with all-dielectric metasurfaces. ACS Nano 2020, 14, 17063–17070.

[29]

Zhang, X. Y.; Guo, Z. H.; Li, R. X.; Yu, J. H.; Yuan, B. Z.; Chen, B. A.; He, T. C.; Chen, R. Quasi-type II core–shell perovskite nanocrystals for improved structural stability and optical gain. ACS Appl. Mater. Interfaces 2021, 13, 58170–58178.

[30]

Wang, Q. H.; Ni, P. N.; Xie, Y. Y.; Kan, Q.; Chen, P. P.; Fu, P.; Deng, J.; Jin, T. L.; Chen, H. D.; Lee, H. W. H. et al. On-chip generation of structured light based on metasurface optoelectronic integration. Laser Photonics Rev. 2021, 15, 2000385.

[31]

Engelberg, J.; Zhou, C.; Mazurski, N.; Bar-David, J.; Kristensen, A.; Levy, U. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics 2020, 9, 361–370.

[32]

Yang, W. H.; Xiao, S. M.; Song, Q. H.; Liu, Y. L.; Wu, Y. K.; Wang, S.; Yu, J.; Han, J. C.; Tsai, D. P. All-dielectric metasurface for high-performance structural color. Nat. Commun. 2020, 11, 1864.

[33]

Chen, W. T.; Zhu, A. Y.; Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 2020, 5, 604–620.

[34]

Kim, I.; Martins, R. J.; Jang, J.; Badloe, T.; Khadir, S.; Jung, H. Y.; Kim, H.; Kim, J.; Genevet, P.; Rho, J. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 2021, 16, 508–524.

File
12274_2023_5439_MOESM1_ESM.pdf (893.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 October 2022
Revised: 08 December 2022
Accepted: 21 December 2022
Published: 10 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11804335, 61904017, 12074045, and 62174079) and Science, Technology and Innovation Commission of Shenzhen Municipality (Projects Nos. JCYJ20210324120204011 and KQTD2015071710313656). P. N. N. acknowledges the support of H2020 Research and Innovation Program (Marie Skłodowska-Curie Individual Fellowship; Agreement No. 101027383).

Return