Journal Home > Volume 16 , Issue 4

Ti3C2 MXene is an auspicious energy storage material due to its metallic conductivity and layered assembly. However, in the real working condition of electrochemical energy storage with long cycle charging–discharging, a structural collapse is usually caused by the stacking of its layers creating a large attenuation of specific capacitance. Inspired by the superlattice effect of magic angle graphene, we conducted microscopical regulation of rotation mismatch on the Ti3C2 lattice; consequently, a hexagonal few-layered Ti3C2 free-standing film constructed with Moiré-superlattices. Such finding not only solves the problem of Ti3C2 structural collapse but also dramatically improves the specific capacitance of Ti3C2 as a supercapacitor electrode under long cycle charging and discharging. The ultra-stable energy storage of this electrode material in a neutral aqueous electrolyte was realized. Moreover, the formation mechanism of rotating Moiré pattern is revealed through microscopy and microanalysis of the produced Moiré pattern, assisted with modeling and analyzing the underlying mechanism between the Moiré pattern and the rotation angle. Our work provides experimental and theoretical support for future construction of Moiré-superlattice structure for a wide range of MXene phases and is undoubtedly promoting the development of MXene materials in the field of energy storage.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Moiré-superlattice MXenes enabled ultra-stable K-ion storage in neutral electrolyte

Show Author's information Qiong Wu1( )Yanhui Xue1Shaofei Chao1Fufa Wu1Muhammad Sufyan Javed2( )Lu Li3( )Wei Zhang4,1( )
School of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China
School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
Key Laboratory of Automobile Materials MOE, School of Materials Science & Engineering, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun 130012, China

Abstract

Ti3C2 MXene is an auspicious energy storage material due to its metallic conductivity and layered assembly. However, in the real working condition of electrochemical energy storage with long cycle charging–discharging, a structural collapse is usually caused by the stacking of its layers creating a large attenuation of specific capacitance. Inspired by the superlattice effect of magic angle graphene, we conducted microscopical regulation of rotation mismatch on the Ti3C2 lattice; consequently, a hexagonal few-layered Ti3C2 free-standing film constructed with Moiré-superlattices. Such finding not only solves the problem of Ti3C2 structural collapse but also dramatically improves the specific capacitance of Ti3C2 as a supercapacitor electrode under long cycle charging and discharging. The ultra-stable energy storage of this electrode material in a neutral aqueous electrolyte was realized. Moreover, the formation mechanism of rotating Moiré pattern is revealed through microscopy and microanalysis of the produced Moiré pattern, assisted with modeling and analyzing the underlying mechanism between the Moiré pattern and the rotation angle. Our work provides experimental and theoretical support for future construction of Moiré-superlattice structure for a wide range of MXene phases and is undoubtedly promoting the development of MXene materials in the field of energy storage.

Keywords: microwave-assisted etching, specific capacitance, Ti3C2 MXene, Moiré-superlattice

References(58)

[1]

Miller, D. L.; Kubista, K. D.; Rutter, G. M.; Ruan, M.; de Heer, W. A.; First, P. N.; Stroscio, J. A. Observing the quantization of zero mass carriers in graphene. Science 2009, 324, 924–927.

[2]

Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

[3]

MacDonald, A. H.; Bistritzer, R. Materials science: Graphene Moiré mystery solved? Nature 2011, 474, 453–454.

[4]

Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

[5]

Luican, A.; Li, G. H.; Reina, A.; Kong, J.; Nair, R. R.; Novoselov, K. S.; Geim, A. K.; Andrei, E. Y. Single-layer behavior and its breakdown in twisted graphene layers. Phys. Rev. Lett. 2011, 106, 126802.

[6]

Yankowitz, M.; Jung, J.; Laksono, E.; Leconte, N.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Adam, S.; Graf, D.; Dean, C. R. Dynamic band-structure tuning of graphene Moiré superlattices with pressure. Nature 2018, 557, 404–408.

[7]

Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

[8]

Kim, K.; DaSilva, A.; Huang, S. Q.; Fallahazad, B.; Larentis, S.; Taniguchi, T.; Watanabe, K.; LeRoy, B. J.; MacDonald, A. H.; Tutuc, E. Tunable Moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl. Acad. Sci. USA 2017, 114, 3364–3369.

[9]

Chen, G. R.; Sui, M. Q.; Wang, D. M.; Wang, S. P.; Jung, J.; Moon, P.; Adam, S.; Watanabe, K.; Taniguchi, T.; Zhou, S. Y. et al. Emergence of tertiary Dirac points in graphene Moiré superlattices. Nano Lett. 2017, 17, 3576–3581.

[10]

Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, Moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

[11]

Javed, M. S.; Zhang, X. F.; Ali, S.; Mateen, A.; Idrees, M.; Sajjad, M.; Batool, S.; Ahmad, A.; Imran, M.; Najam, T. et al. Heterostructured bimetallic-sulfide@layered Ti3C2Tx-MXene as a synergistic electrode to realize high-energy-density aqueous hybrid-supercapacitor. Nano Energy 2022, 101, 107624.

[12]

Mayorov, A. S.; Gorbachev, R. V.; Morozov, S. V.; Britnell, L.; Jalil, R.; Ponomarenko, L. A.; Blake, P.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 2011, 11, 2396–2399.

[13]

Jawaid, A.; Hassan, A.; Neher, G.; Nepal, D.; Pachter, R.; Kennedy, W. J.; Ramakrishnan, S.; Vaia, R. A. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 2021, 15, 2771–2777.

[14]

Yin, J. J.; Wei, K.; Zhang, J. X.; Liu, S. D.; Wang, X. L.; Wang, X. M.; Zhang, Q. R.; Qin, Z. H.; Jiao, T. F. MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Rep. Phys. Sci. 2022, 3, 100893.

[15]

Wang, X. M.; Wang, X. L.; Yin, J. J.; Li, N.; Zhang, Z. L.; Xu, Y. W.; Zhang, L. X.; Qin, Z. H.; Jiao, T. F. Mechanically robust, degradable and conductive MXene-composited gelatin organohydrogel with environmental stability and self-adhesiveness for multifunctional sensor. Compos. Part B Eng. 2022, 241, 110052.

[16]

Ming, F. W.; Liang, H. F.; Huang, G.; Bayhan, Z.; Alshareef, H. N. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 2021, 33, 2004039.

[17]

Javed, M. S.; Shah, S. S. A.; Najam, T.; Siyal, S. H.; Hussain, S.; Saleem, M.; Zhao, Z. J.; Mai, W. J. Achieving high-energy density and superior cyclic stability in flexible and lightweight pseudocapacitor through synergic effects of binder-free CoGa2O4 2D-hexagonal nanoplates. Nano Energy 2020, 77, 105276.

[18]

Natu, V.; Hart, J. L.; Sokol, M.; Chiang, H.; Taheri, M. L.; Barsoum, M. W. Edge capping of 2D-MXene sheets with polyanionic salts to mitigate oxidation in aqueous colloidal suspensions. Angew. Chem., Int. Ed. 2019, 58, 12655–12660.

[19]

Im, J. K.; Sohn, E. J.; Kim, S.; Jang, M.; Son, A.; Zoh, K. D.; Yoon, Y. Review of MXene-based nanocomposites for photocatalysis. Chemosphere 2021, 270, 129478.

[20]

Lim, K. R. G.; Handoko, A. D.; Johnson, L. R.; Meng, X.; Lin, M.; Subramanian, G. S.; Anasori, B.; Gogotsi, Y.; Vojvodic, A.; Seh, Z. W. 2H-MoS2 on Mo2CTx MXene nanohybrid for efficient and durable electrocatalytic hydrogen evolution. ACS Nano 2020, 14, 16140–16155.

[21]

Han, M. K.; Liu, Y. Q.; Rakhmanov, R.; Israel, C.; Tajin, M. A. S.; Friedman, G.; Volman, V.; Hoorfar, A.; Dandekar, K. R.; Gogotsi, Y. Solution-processed Ti3C2Tx MXene antennas for radio-frequency communication. Adv. Mater. 2021, 33, 2003225.

[22]

Gencer, A.; Aydin, S.; Surucu, O.; Wang, X. T.; Deligoz, E.; Surucu, G. Enhanced hydrogen storage of a functional material: Hf2CF2 MXene with Li decoration. Appl. Surf. Sci. 2021, 551, 149484.

[23]

Li, L.; Wen, J.; Zhang, X. T. Progress of two-dimensional Ti3C2Tx in supercapacitors. ChemSusChem 2020, 13, 1296–1329.

[24]

Li, J. Y.; Zhang, W.; Ge, X.; Lu, M.; Xue, X. X.; Wang, Z. Z.; Yue, N. L.; Zhang, J. K.; Lang, X. Y.; Jiang, Q. et al. Etching-courtesy NH4+ pre-intercalation enables highly-efficient Li+ storage of MXenes via the renaissance of interlayer redox. J. Energy Chem. 2022, 72, 26–32.

[25]

Naguib, M.; Saito, T.; Lai, S.; Rager, M. S.; Aytug, T.; Paranthaman, M. P.; Zhao, M. Q.; Gogotsi, Y. Ti3C2Tx (MXene)-polyacrylamide nanocomposite films. RSC Adv. 2016, 6, 72069–72073.

[26]

Garg, R.; Agarwal, A.; Agarwal, M. Effect of vanadium doping on MXene-based supercapacitor. J. Mater. Sci. Mater. Electron. 2021, 32, 22046–22059.

[27]

Lu, M.; Han, W. J.; Li, H. B.; Zhang, W.; Zhang, B. S. There is plenty of space in the MXene layers: The confinement and fillings. J. Energy Chem. 2020, 48, 344–363.

[28]

Ussia, M.; Bruno, E.; Spina, E.; Vitalini, D.; Pellegrino, G.; Ruffino, F.; Privitera, V.; Carroccio, S. C. Freestanding photocatalytic materials based on 3D graphene and polyporphyrins. Sci. Rep. 2018, 8, 5001.

[29]

Ghasali, E.; Orooji, Y.; Azarniya, A.; Alizadeh, M.; Kazem-Zad, M.; TouradjEbadzadeh. Production of V2C MXene using a repetitive pattern of V2AlC MAX phase through microwave heating of Al-V2O5-C system. Appl. Surf. Sci. 2021, 542, 148538.

[30]

Wu, Q.; Li, C. S.; Tang, H. Surface characterization and growth mechanism of laminated Ti3SiC2 crystals fabricated by hot isostatic pressing. Appl. Surf. Sci. 2010, 256, 6986–6990.

[31]

Wu, Q.; Li, P. F.; Wang, Y. H.; Wu, F. F. Construction and electrochemical energy storage performance of free-standing hexagonal Ti3C2 film for flexible supercapacitor. Appl. Surf. Sci. 2022, 593, 153380.

[32]

Lu, J.; Persson, I.; Lind, H.; Palisaitis, J.; Li, M.; Li, Y.; Chen, K.; Zhou, J.; Du, S.; Chai, Z. et al. Tin+1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv. 2019, 1, 3680–3685.

[33]

Wu, Q.; Wang, Y. H.; Li, P. F.; Chen, S. H.; Wu, F. F. Electrochemical performance and charge storage mechanism of few-layer MXene titanium carbide for supercapacitors. J. Electrochem. Soc. 2021, 168, 090549.

[34]

Wu, Q.; Wang, Y. H.; Li, P. F.; Chen, S. H.; Wu, F. F. MXene titanium carbide synthesized by hexagonal titanium aluminum carbide with high specific capacitance and low impedance. Dalton Trans. 2022, 51, 3263–3274.

[35]

Firestein, K. L.; von Treifeldt, J. E.; Kvashnin, D. G.; Fernando, J. F. S.; Zhang, C.; Kvashnin, A. G.; Podryabinkin, E. V.; Shapeev, A. V.; Siriwardena, D. P.; Sorokin, P. B. et al. Young’s modulus and tensile strength of Ti3C2 MXene nanosheets as revealed by in situ TEM probing, AFM nanomechanical mapping, and theoretical calculations. Nano Lett. 2020, 20, 5900–5908.

[36]

Wu, Q.; Ren, Y. Q.; Li, P. F.; Wang, Y. H.; Yang, Z. X.; Qu, K. K.; Qi, G. C.; Chen, S. H.; Wu, F. F. MXene titanium carbide with high specific capacitance fabricated by microwave-assisted selective etching. Appl. Phys. A 2021, 127, 360.

[37]

Hart, J. L.; Hantanasirisakul, K.; Lang, A. C.; Anasori, B.; Pinto, D.; Pivak, Y.; van Omme, J. T.; May, S. J.; Gogotsi, Y.; Taheri, M. L. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 2019, 10, 522.

[38]

Zhang, W.; Sui, M. L.; Zhou, Y. Z.; Guo, J. D.; He, G. H.; Li, D. X. Evolution of microstructure in TiC/NiCr cermet induced by electropulsing. J. Mater. Res. 2003, 18, 1543–1550.

[39]

Ahn, S. J.; Moon, P.; Kim, T. H.; Kim, H. W.; Shin, H. C.; Kim, E. H.; Cha, H. W.; Kahng, S. J.; Kim, P.; Koshino, M. et al. Dirac electrons in a dodecagonal graphene quasicrystal. Science 2018, 361, 782–786.

[40]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

[41]

Collini, P.; Kota, S.; Dillon, A. D.; Barsoum, M. W.; Fafarman, A. T. Electrophoretic deposition of two-dimensional titanium carbide (MXene) thick films. J. Electrochem. Soc. 2017, 164, D573–D580.

[42]

Javed, M. S.; Lei, H.; Wang, Z. L.; Liu, B. T.; Cai, X.; Mai, W. J. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy 2020, 70, 104573.

[43]

Li, L.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors. J. Power Sources 2017, 364, 234–241.

[44]

Javed, M. S.; Mateen, A.; Ali, S.; Zhang, X. F.; Hussain, I.; Imran, M.; Shah, S. S. A.; Han, W. H. The emergence of 2D MXenes based Zn-ion batteries: Recent development and prospects. Small 2022, 18, 2201989.

[45]

Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

[46]

Vaghasiya, J. V.; Mayorga-Martinez, C. C.; Sofer, Z.; Pumera, M. MXene-based flexible supercapacitors: Influence of an organic ionic conductor electrolyte on the performance. ACS Appl. Mater. Interfaces 2020, 12, 53039–53048.

[47]

Naguib, M.; Halim, J.; Lu, J.; Cook, K. M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 15966–15969.

[48]

Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

[49]

Wu, Q.; Wang, Y. H.; Li, P. F.; Chen, S. H.; Wu, F. F. Microwave-assisted synthesis of few-layered MXene Ti3C2 with high specific capacitance and low impedance for supercapacitor. Appl. Phys. A 2021, 127, 822.

[50]

Li, L.; Zhang, N.; Zhang, M. Y.; Zhang, X. T.; Zhang, Z. G. Flexible Ti3C2Tx/PEDOT:PSS films with outstanding volumetric capacitance for asymmetric supercapacitors. Dalton Trans. 2019, 48, 1747–1756.

[51]

Javed, M. S.; Lei, H.; Shah, H. U.; Asim, S.; Raza, R.; Mai, W. J. Achieving high rate and high energy density in an all-solid-state flexible asymmetric pseudocapacitor through the synergistic design of binder-free 3D ZnCo2O4 nano polyhedra and 2D layered Ti3C2Tx-MXenes. J. Mater. Chem. A 2019, 7, 24543–24556.

[52]

Liu, W. H.; Wang, Z. Q.; Su, Y. L.; Li, Q. W.; Zhao, Z. G.; Geng, F. X. Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances. Adv. Energy Mater. 2017, 7, 1602834.

[53]

Rakhi, R. B.; Ahmed, B.; Anjum, D.; Alshareef, H. N. Direct chemical synthesis of MnO2 nanowhiskers on transition-metal carbide surfaces for supercapacitor applications. ACS Appl. Mater. Interfaces 2016, 8, 18806–18814.

[54]

Navarro-Suárez, A. M.; van Aken, K. L.; Mathis, T.; Makaryan, T.; Yan, J.; Carretero-González, J.; Rojo, T.; Gogotsi, Y. Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochim. Acta 2018, 259, 752–761.

[55]

Pan, Z. H.; Cao, F.; Hu, X.; Ji, X. H. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 8984–8992.

[56]

Guo, J.; Zhao, Y. Y.; Liu, A. M.; Ma, T. L. Electrostatic self-assembly of 2D delaminated MXene (Ti3C2) onto Ni foam with superior electrochemical performance for supercapacitor. Electrochim. Acta 2019, 305, 164–174.

[57]

Yu, L. Y.; Hu, L. F.; Anasori, B.; Liu, Y. T.; Zhu, Q. Z.; Zhang, P.; Gogotsi, Y.; Xu, B. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett. 2018, 3, 1597–1603.

[58]

Li, X. L.; Zhu, J. F.; Zhang, B.; Jiao, Y. H.; Huang, J. H.; Wang, F. X. Manganese dioxide nanosheets decorated on MXene (Ti3C2Tx) with enhanced performance for asymmetric supercapacitors. Ceram. Int. 2021, 47, 12211–12220.

File
12274_2023_5437_MOESM1_ESM.pdf (12.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 October 2022
Revised: 08 December 2022
Accepted: 21 December 2022
Published: 21 January 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. 51971106 and 52272209), Basic Scientific Research Project of Higher Education Department of Liaoning Province (No. LJKMZ20220961), and the Program for Liaoning Distinguished Professor.

Return