Journal Home > Volume 16 , Issue 5

As one of the most promising cathodes for sodium-ion batteries (SIBs), the layered transition metal oxides have attracted great attentions due to their high specific capacities and facile synthesis. However, their applications are still hindered by the problems of poor moisture stability and sluggish Na+ diffusion caused by intrinsic structural Jahn–Teller distortion. Herein, we demonstrate a new approach to settle the above issues through introducing K+ into the structures of Ni/Mn-based materials. The physicochemical characterizations reveal that K+ induces atomic surface reorganization to form the birnessite-type K2Mn4O8. Combining with the phosphate, the mixed coating layer protects the cathodes from moisture and hinders metal dissolution into the electrolyte effectively. Simultaneously, K+ substitution at Na site in the bulk structure can not only widen the lattice-spacing for favoring Na+ diffusion, but also work as the rivet to restrain the grain crack upon cycling. The as achieved K+-decorated P2-Na0.67Mn0.75Ni0.25O2 (NKMNO@KM/KP) cathodes are tested in both coin cell and pouch cell configurations using Na metal or hard carbon (HC) as anodes. Impressively, the NKMNO@KM/KP||Na half-cell demonstrates a high rate performance of 50 C and outstanding cycling performance of 90.1% capacity retention after 100 cycles at 5 C. Furthermore, the NKMNO@KM/KP||HC full-cell performed a promising energy density of 213.9 Wh·kg−1. This performance significantly outperforms most reported state-of-the-art values. Additionally, by adopting this strategy on O3-NaMn0.5Ni0.5O2, we further proved the universality of this method on layered cathodes for SIBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration

Show Author's information Tao Yuan1,§Yuanyuan Sun1,§Siqing Li1Haiying Che2Qinfeng Zheng3Yongjian Ni4Yixiao Zhang3Jie Zou4Xiaoxian Zang3,5Shi-Hao Wei4Yuepeng Pang1Shuixin Xia1Shiyou Zheng1( )Liwei Chen3( )Zi-Feng Ma2,3( )
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
Zhejiang Natrium Energy Co., Ltd., Shaoxing 312000, China
In-situ Center for Physical Sciences, Shanghai Electrochemical Energy Device Research Center, and Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315000, China
Key Laboratory of Solar Energy Utilization & Energy Saving Technology of Zhejiang Province, Zhejiang Energy R&D Institute Co., Ltd., Hangzhou 311121, China

§ Tao Yuan and Yuanyuan Sun contributed equally to this work.

Abstract

As one of the most promising cathodes for sodium-ion batteries (SIBs), the layered transition metal oxides have attracted great attentions due to their high specific capacities and facile synthesis. However, their applications are still hindered by the problems of poor moisture stability and sluggish Na+ diffusion caused by intrinsic structural Jahn–Teller distortion. Herein, we demonstrate a new approach to settle the above issues through introducing K+ into the structures of Ni/Mn-based materials. The physicochemical characterizations reveal that K+ induces atomic surface reorganization to form the birnessite-type K2Mn4O8. Combining with the phosphate, the mixed coating layer protects the cathodes from moisture and hinders metal dissolution into the electrolyte effectively. Simultaneously, K+ substitution at Na site in the bulk structure can not only widen the lattice-spacing for favoring Na+ diffusion, but also work as the rivet to restrain the grain crack upon cycling. The as achieved K+-decorated P2-Na0.67Mn0.75Ni0.25O2 (NKMNO@KM/KP) cathodes are tested in both coin cell and pouch cell configurations using Na metal or hard carbon (HC) as anodes. Impressively, the NKMNO@KM/KP||Na half-cell demonstrates a high rate performance of 50 C and outstanding cycling performance of 90.1% capacity retention after 100 cycles at 5 C. Furthermore, the NKMNO@KM/KP||HC full-cell performed a promising energy density of 213.9 Wh·kg−1. This performance significantly outperforms most reported state-of-the-art values. Additionally, by adopting this strategy on O3-NaMn0.5Ni0.5O2, we further proved the universality of this method on layered cathodes for SIBs.

Keywords: cathode, sodium-ion battery, layered oxide material, K+ decoration

References(79)

[1]

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

[2]

Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

[3]

Zhu, X. B.; Schulli, T. U.; Yang, X.; Lin, T. E.; Hu, Y. X.; Cheng, N. Y.; Fujii, H.; Ozawa, K.; Cowie, B.; Gu, Q. F. et al. Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nat Commun 2022, 13, 1565.

[4]

Zhong, Y. J.; Xu, X. M.; Liu, P. Y.; Ran, R.; Jiang, S. P.; Wu, H. W.; Shao, Z. P. A function-separated design of electrode for realizing high-performance hybrid zinc battery. Adv. Energy Mater. 2020, 10, 2002992.

[5]

Zhong, Y. J.; Xu, X. M.; Veder, J. P.; Shao, Z. P. Self-recovery chemistry and cobalt-catalyzed electrochemical deposition of cathode for boosting performance of aqueous zinc-ion batteries. iScience 2020, 23, 100943.

[6]

Gao, R. M.; Zheng, Z. J.; Wang, P. F.; Wang, C. Y.; Ye, H.; Cao, F. F. Recent advances and prospects of layered transition metal oxide cathodes for sodium-ion batteries. Energy Storage Mater. 2020, 30, 9–26.

[7]

Wang, P. F.; You, Y.; Yin, Y. X.; Guo, Y. G. Layered oxide cathodes for sodium-ion batteries: Phase transition, air stability, and performance. Adv. Energy Mater. 2018, 8, 1701912.

[8]

Yuan, T.; Luo, S. N.; Soule, L.; Wang, J. H.; Wang, Y. C.; Sun, D. W.; Zhao, B. T.; Li, W. W.; Yang, J. H.; Zheng, S. Y. et al. A hierarchical Ti2Nb10O29 composite electrode for high-power lithium-ion batteries and capacitors. Mater. Today 2021, 45, 8–19.

[9]

Yao, H. F.; Yuan, T.; Zhang, L.; Soule, L.; Zhang, P. C.; Pang, Y. P.; Yang, J. H.; Ma, Z. F.; Zheng, S. Y. Spherical sodium metal deposition and growth mechanism study in three-electrode sodium-ion full-cell system. J. Power Sources 2020, 455, 227919.

[10]

Che, H. Y.; Chen, S. L.; Xie, Y. Y.; Wang, H.; Amine, K.; Liao, X. Z.; Ma, Z. F. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energ. Environ. Sci. 2017, 10, 1075–1101.

[11]

Fatima, H.; Zhong, Y. J.; Wu, H. W.; Shao, Z. P. Recent advances in functional oxides for high energy density sodium-ion batteries. Mater. Rep. Energ. 2021, 1, 100022.

[12]

Xie, Y. Y.; Xu, G. L.; Che, H. Y.; Wang, H.; Yang, K.; Yang, X. R.; Guo, F. M.; Ren, Y.; Chen, Z. H.; Amine, K. et al. Probing thermal and chemical stability of NaxNi1/3Fe1/3Mn1/3O2 cathode material toward safe sodium-ion batteries. Chem. Mater. 2018, 30, 4909–4918.

[13]

Sun, Y.; Wang, H.; Meng, D. C.; Li, X. Q.; Liao, X. Z.; Che, H. Y.; Cui, G. J.; Yu, F. P.; Yang, W. M.; Li, L. S. et al. Degradation mechanism of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode materials during ambient storage and their in-situ regeneration. ACS Appl. Energy Mater. 2021, 4, 2061–2067.

[14]

Jiang, K. Z.; Guo, S. H.; Pang, W. K.; Zhang, X. P.; Fang, T. C.; Wang, S. F.; Wang, F. W.; Zhang, X. Y.; He, P.; Zhou, H. S. Oxygen vacancy promising highly reversible phase transition in layered cathodes for sodium-ion batteries. Nano Res. 2021, 14, 4100–4106.

[15]

Guo, S. H.; Liu, P.; Yu, H. J.; Zhu, Y. B.; Chen, M. W.; Ishida, M.; Zhou, H. S. A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew. Chem., Int. Ed. 2015, 54, 5894–5899.

[16]

Peng, B.; Sun, Z. H.; Zhao, L. P.; Li, J.; Zhang, G. Q. Dual-manipulation on P2-Na0.67Ni0.33Mn0.67O2 layered cathode toward sodium-ion full cell with record operating voltage beyond 3.5 V. Energy Storage Mater. 2021, 35, 620–629.

[17]

Wang, K.; Wan, H.; Yan, P. F.; Chen, X.; Fu, J. J.; Liu, Z. X.; Deng, H. Q.; Gao, F.; Sui, M. Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries. Adv. Mater. 2019, 31, 1904816.

[18]

Sun, H. H.; Hwang, J. Y.; Yoon, C. S.; Heller, A.; Mullins, C. B. Capacity degradation mechanism and cycling stability enhancement of AlF3-coated nanorod gradient Na[Ni0.65Co0.08Mn0.27]O2 cathode for sodium-ion batteries. ACS Nano 2018, 12, 12912–12922.

[19]

You, Y.; Dolocan, A.; Li, W. D.; Manthiram, A. Understanding the air-exposure degradation chemistry at a nanoscale of layered oxide cathodes for sodium-ion batteries. Nano Lett. 2019, 19, 182–188.

[20]

Liu, Y. H.; Fang, X.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Enaya, H. A.; Zhou, C. W. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 2016, 27, 27–34.

[21]

Yang, Y. Q.; Dang, R. B.; Wu, K.; Li, Q.; Li, N.; Xiao, X. L.; Hu, Z. B. Semiconductor material ZnO-coated P2-type Na2/3Ni1/3Mn2/3O2 cathode materials for sodium-ion batteries with superior electrochemical performance. J. Phys. Chem. C 2019, 124, 1780–1787.

[22]

Kong, W. J.; Wang, H. B.; Zhai, Y. W.; Sun, L. M.; Liu, X. F. Enhancing the rate capability and cycling stability of Na0.67Mn0.7Fe0.2Co0.1O2 through a synergy of Zr4+ doping and ZrO2 coating. J. Phys. Chem. C 2018, 122, 25909–25916.

[23]

Cui, X. L.; Wang, S. M.; Ye, X. S.; Fan, X. Q.; Gao, C. K.; Quan, Y.; Wen, S. X.; Cai, X. P.; Huang, J.; Li, S. Y. Insights into the improved cycle and rate performance by ex-situ F and in-situ Mg dual doping of layered oxide cathodes for sodium-ion batteries. Energy Storage Mater. 2022, 45, 1153–1164.

[24]

Huang, X. Q.; Li, D. L.; Huang, H. J.; Jiang, X.; Yang, Z. H.; Zhang, W. X. Fast and highly reversible Na+ intercalation/extraction in Zn/Mg dual-doped P2-Na0.67MnO2 cathode material for high-performance Na-ion batteries. Nano Res. 2021, 14, 3531–3537.

[25]

Wang, L.; Sun, Y. G.; Hu, L. L.; Piao, J. Y.; Guo, J.; Manthiram, A.; Ma, J. M.; Cao, A. M. Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J. Mater. Chem. A 2017, 5, 8752–8761.

[26]

Pang, W. L.; Zhang, X. H.; Guo, J. Z.; Li, J. Y.; Yan, X.; Hou, B. H.; Guan, H. Y.; Wu, X. L. P2-type Na2/3Mn1−xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J. Power Sources 2017, 356, 80–88.

[27]

Zhang, L.; Yuan, T.; Soule, L.; Sun, H.; Pang, Y. P.; Yang, J. H.; Zheng, S. Y. Enhanced ionic transport and structural stability of Nb-doped O3-NaFe0.55Mn0.45−xNbxO2 cathode material for long-lasting sodium-ion batteries. ACS Appl. Energy Mater. 2022, 3, 3770–3778.

[28]

Ren, J.; Dang, R. B.; Yang, Y. Q.; Wu, K.; Lee, Y.; Hu, Z. B.; Xiao, X. L.; Wang, M. Core–shell structure and X-doped (X  = Li, Zr) comodified O3-NaNi0.5Mn0.5O2: Excellent electrochemical performance as cathode materials of sodium-ion batteries. Energy Technol. 2020, 8, 1901504.

[29]

Wang, Y. S.; Feng, Z. M.; Cui, P. X.; Zhu, W.; Gong, Y.; Girard, M. A.; Lajoie, G.; Trottier, J.; Zhang, Q. H.; Gu, L. et al. Pillar–beam structures prevent layered cathode materials from destructive phase transitions. Nat. Commun. 2021, 12, 13.

[30]

Dang, R. B.; Li, Q.; Chen, M. M.; Hu, Z. B.; Xiao, X. L. CuO-coated and Cu2+-doped co-modified P2-type Na2/3[Ni1/3Mn2/3]O2 for sodium-ion batteries. Phys. Chem. Chem. Phys. 2018, 21, 314–321.

[31]

Tang, K.; Huang, Y.; Xie, X.; Cao, S.; Liu, L.; Liu, M.; Huang, Y. H.; Chang, B. B.; Luo, Z. G.; Wang, X. Y. The effects of dual modification on structure and performance of P2-type layered oxide cathode for sodium-ion batteries. Chem. Eng. J. 2020, 384, 123234.

[32]

Voronin, V. I.; Ponosov, Y. S.; Berger, I. F.; Proskurnina, N. V.; Zubkov, V. G.; Tyutyunnik, A. P.; Bushmeleva, S. N.; Balagurov, A. M.; Sheptyakov, D. V.; Burmakin, E. I. et al. Crystal structure of the low-temperature form of K3PO4. Inorg. Mater. 2006, 42, 908–913.

[33]

You, Y.; Song, B. H.; Jarvis, K.; Huq, A.; Manthiram, A. Insights into the improved chemical stability against water of LiF-incorporated layered oxide cathodes for sodium-ion batteries. ACS Mater. Lett. 2019, 1, 89–95.

[34]

Yao, H. R.; Zheng, L. T.; Xin, S.; Guo, Y. G. Air-stability of sodium-based layered-oxide cathode materials. Sci. China Chem. 2022, 65, 1076–1087.

[35]

Aragón, M. J.; Ortiz, G. F.; Lavela, P.; Tirado, J. L.; Oliveira, J. D. C.; Motta, F. V.; Bomio, M. R. D. On the use of guanidine hydrochloride soft template in the synthesis of Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries. J. Alloys Compd. 2019, 789, 1035–1045.

[36]

Li, W.; Yao, Z. J.; Zhang, S. Z.; Wang, X. L.; Xia, X. H.; Gu, C. D.; Tu, J. P. Building superior layered oxide cathode via rational surface engineering for both liquid & solid-state sodium ion batteries. Chem. Eng. J. 2021, 421, 127788.

[37]

Luo, R. J.; Li, X. L.; Ding, J. Y.; Bao, J.; Ma, C.; Du, C. Y.; Cai, X. Y.; Wu, X. J.; Zhou, Y. N. Suppressing Jahn–Teller distortion and phase transition of K0.5MnO2 by K-site Mg substitution for potassium-ion batteries. Energy Storage Mater. 2022, 47, 408–414.

[38]

Wang, K.; Wu, Z. G.; Zhang, T.; Deng, Y. P.; Li, J. T.; Guo, X. D.; Xu, B. B.; Zhong, B. H. P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries. Electrochim. Acta 2016, 216, 51–57.

[39]

Wang, C. C.; Liu, L. J.; Zhao, S.; Liu, Y. C.; Yang, Y. B.; Yu, H. J.; Lee, S.; Lee, G. H.; Kang, Y. M.; Liu, R. et al. Tuning local chemistry of P2 layered-oxide cathode for high energy and long cycles of sodium-ion battery. Nat. Commun. 2021, 12, 2256.

[40]

Wang, L. J.; Wang, Y. Z.; Yang, X. H.; Wang, J. L.; Yang, X. D.; Tang, J. T. Excellent cyclability of P2-type Na-Co-Mn-Si-O cathode material for high-rate sodium-ion batteries. J. Mater. Sci. 2019, 54, 12723–12736.

[41]

Ma, C.; Li, X. L.; Yue, X. Y.; Bao, J.; Luo, R. J.; Zhou, Y. N. Suppressing O3–O’3 phase transition in NaCrO2 cathode enabling high rate capability for sodium-ion batteries by Sb substitution. Chem. Eng. J. 2022, 432, 134305.

[42]

Hwang, J. Y.; Yu, T. Y.; Sun, Y. K. Simultaneous MgO coating and Mg doping of Na[Ni0.5Mn0. 5]O2 cathode: Facile and customizable approach to high-voltage sodium-ion batteries. J. Mater. Chem. A 2018, 6, 16854–16862.

[43]

Tosun, S. G.; Uzun, D.; Yeşilot, S. Novel K+-doped Na0.6Mn0.35Fe0.35Co0.3O2 cathode materials for sodium-ion batteries: Synthesis, structures, and electrochemical properties. J. Solid State Electrochem. 2021, 25, 1271–1281.

[44]

Li, S. Q.; Sun, Y. Y.; Pang, Y. P.; Xia, S. X.; Chen, T. Q.; Sun, H.; Zheng, S. Y.; Yuan, T. Recent developments of layered transition metal oxide cathodes for sodium-ion batteries toward desired high performance. Asia-Pac. J. Chem. Eng. 2022, 17, e2762.

[45]

Xia, J. Y.; Wu, W. W.; Fang, K. X.; Wu, X. H. Enhancing the interfacial stability of P2-type cathodes by polydopamine-derived carbon coating for achieving performance improvement. Carbon 2020, 157, 693–702.

[46]

Wang, L. J.; Wang, Y. Z.; Zhao, J. B.; Li, Y. H.; Wang, J. L.; Yang, X. H. Nb5+-doped P2-type Mn-based layered oxide cathode with an excellent high-rate cycling stability for sodium-ion batteries. Ionics 2019, 25, 4775–4786.

[47]

Wang, Y.; Tang, K.; Li, X. L.; Yu, R. Z.; Zhang, X. H.; Huang, Y.; Chen, G. R.; Jamil, S.; Cao, S.; Xie, X. et al. Improved cycle and air stability of P3-Na0.65Mn0.75Ni0.25O2 electrode for sodium-ion batteries coated with metal phosphates. Chem. Eng. J. 2019, 372, 1066–1076.

[48]

Zhang, Y.; Pei, Y.; Liu, W.; Zhang, S.; Xie, J. J.; Xia, J.; Nie, S.; Liu, L.; Wang, X. Y. AlPO4-coated P2-type hexagonal Na0.7MnO2.05 as high stability cathode for sodium ion battery. Chem. Eng. J. 2020, 382, 122697.

[49]

Jo, C. H.; Jo, J. H.; Yashiro, H.; Kim, S. J.; Sun, Y. K.; Myung, S. T. Bioinspired surface layer for the cathode material of high-energy-density sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702942.

[50]

Burmakin, E. I.; Shekhtman, G. S. On ion transport mechanism in K+-conducting solid electrolytes based on K3PO4. Solid State Ionics 2014, 265, 46–48.

[51]

Zhao, R. R.; Yang, Z. L.; Liang, J. X.; Lu, D. L.; Liang, C. C.; Guan, X. C.; Gao, A. M.; Chen, H. Y. Understanding the role of Na-doping on Ni-rich layered oxide LiNi0.5Co0.2Mn0.3O2. J. Alloys Compd. 2016, 689, 318–325.

[52]

Shen, Y. B.; Yao, X. J.; Zhang, J. H.; Wang, S. H.; Zhang, D. Y.; Yin, D. M.; Wang, L. M.; Zhang, Y. H.; Hu, J. H.; Cheng, Y. et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy 2022, 94, 106900.

[53]

Mao, Q. J.; Zhang, C.; Yang, W. Y.; Yang, J. B.; Sun, L. M.; Hao, Y. M.; Liu, X. F. Mitigating the voltage fading and lattice cell variations of O3-NaNi0.2Fe0.35Mn0.45O2 for high performance Na-ion battery cathode by Zn doping. J. Alloys Compd. 2019, 794, 509–517.

[54]

Leng, M. Z.; Bi, J. Q.; Xing, Z.; Wang, W. L.; Gao, X. C.; Wang, J. Y.; Qian, Z. A new perspective on the composition–structure–property relationships on Nb/Mo/Cr-doped O3-type layered oxide as cathode materials for sodium-ion batteries. Chem. Eng. J. 2021, 413, 127824.

[55]

Jin, T.; Wang, P. F.; Wang, Q. C.; Zhu, K. J.; Deng, T.; Zhang, J. X.; Zhang, W.; Yang, X. Q.; Jiao, L. F.; Wang, C. S. Realizing complete solid–solution reaction in high sodium content P2-type cathode for high-performance sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 14511–14516.

[56]

Fu, H. W.; Wang, Y. P.; Fan, G. Z.; Guo, S.; Xie, X. S.; Cao, X. X.; Lu, B. A.; Long, M. Q.; Zhou, J.; Liang, S. Q. Synergetic stability enhancement with magnesium and calcium ion substitution for Ni/Mn-based P2-type sodium-ion battery cathodes. Chem. Sci. 2022, 13, 726–736.

[57]

Yuan, T.; Tan, Z. P.; Ma, C. R.; Yang, J. H.; Ma, Z. F.; Zheng, S. Y. Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv. Energy Mater. 2017, 7, 1601625.

[58]

Kaliyappan, K.; Or, T.; Deng, Y. P.; Hu, Y. F.; Bai, Z. Y.; Chen, Z. W. Constructing safe and durable hightructing P2 layered cathodes for sodium-ion batteries enabled by molecular layer deposition of alucone. Adv. Funct. Mater. 2020, 30, 1910251.

[59]

Ma, X. H.; Li, L. L.; Cheng, L.; Qiao, F.; Ye, Y. Y.; Li, N.; Sha, M. L.; Zi, Z. F.; Dai, J. M. P2-type Na0.8(Li0.33Mn0.67−xTix)O2 doped by Ti as cathode materials for high performance sodium-ion batteries. J. Alloys Compd. 2020, 815, 152402.

[60]

Li, Y.; Shi, Q. H.; Yin, X. P.; Wang, J.; Wang, J.; Zhao, Y. F.; Zhang, J. J. Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chem. Eng. J. 2020, 402, 126181.

[61]

Wang, L. J.; Wang, Y. Z.; Yang, X. H.; Wang, J. L.; Li, Y. H.; Zhao, J. B. Enhanced sodium storage characteristics of P2-Na2/3Mn3/4Co1/4O2 cathode co-modified by La2O3 and TiO2 oxide. Mater. Chem. Phys. 2019, 238, 121933.

[62]

Yu, Y.; Kong, W. J.; Li, Q. Y.; Ning, D.; Schuck, G.; Schumacher, G.; Su, C. J.; Liu, X. F. Understanding the multiple effects of TiO2 coating on NaMn0.33Fe0.33Ni0.33O2 cathode material for Na-ion batteries. ACS Appl. Energy Mater. 2020, 3, 933–942.

[63]

Li, N.; Ren, J.; Dang, R. B.; Wu, K.; Lee, Y. L.; Hu, Z. B.; Xiao, X. L. Suppressing phase transition and improving electrochemical performances of O3-NaNi1/3Mn1/3Fe1/3O2 through ionic conductive Na2SiO3 coating. Journal of Power Sources 2019, 429, 38–45.

[64]

Wang, K.; Yan, P. F.; Sui, M. Phase transition induced cracking plaguing layered cathode for sodium-ion battery. Nano Energy 2018, 54, 148–155.

[65]

Zhou, P. F.; Che, Z. N.; Ma, F. T.; Zhang, J.; Weng, J. Y.; Wu, X. Z.; Miao, Z. C.; Lin, H. T.; Zhou, J.; Zhuo, S. P. Designing water/air-stable P2-layered cathodes with delayed P2–O2 phase transition by composition and structure engineering for sodium-ion batteries at high voltage. Chem. Eng. J. 2021, 420, 127667.

[66]

Kong, W. J.; Gao, R.; Li, Q. Y.; Yang, W. Y.; Yang, J. B.; Sun, L. M.; Liu, X. F. Simultaneously tuning cationic and anionic redox in a P2-Na0.67Mn0.75Ni0.25O2 cathode material through synergic Cu/Mg co-doping. J. Mater. Chem. A. 2019, 7, 9099–9109.

[67]

Li, X. F.; Liu, J.; Meng, X. B.; Tang, Y. J.; Banis, M. N.; Yang, J. L.; Hu, Y. H.; Li, R. Y.; Cai, M.; Sun, X. L. Significant impact on cathode performance of lithium-ion batteries by precisely controlled metal oxide nanocoatings via atomic layer deposition. J. Power Sources 2014, 247, 57–69.

[68]

Wang, S. M.; Li, C. L.; Fan, X. Q.; Wen, S. X.; Lu, H. L.; Dong, H.; Wang, J.; Quan, Y.; Li, S. Y. Selection of sodium salt electrolyte compatible with Na0.67Ni0.15Fe0.2Mn0.65O2 cathode for sodium salt electrol. Energy Technol. 2021, 9, 2100190.

[69]

Shen, Q. Y.; Zhao, X. D.; Liu, Y. C.; Li, Y. P.; Zhang, J.; Zhang, N.; Yang, C. H.; Chen, J. Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode. Adv. Sci. 2020, 7, 2002199.

[70]

Xiao, J.; Gao, H.; Tang, K. K.; Long, M. Q.; Chen, J.; Liu, H.; Wang, G. X. Manipulating stable layered P2-type cathode via a co-substitution strategy for high performance sodium ion batteries. Small Methods 2022, 6, e2101292.

[71]
Ballhausen, C. J. Crystal field theory. 1962, 56, 194–197.
[72]

Sun, H.; Zhao, K. J. Electronic structure and comparative properties of LiNixMnyCozO2 cathode materials. J. Phys. Chem. C 2017, 121, 6002–6010.

[73]

Meng, X. M.; Zhang, D.; Zhao, Z. Z.; Li, Y. F.; Xu, S. D.; Chen, L.; Wang, X. M.; Liu, S. B.; Wu, Y. C. O3-NaNi0.47Zn0.03Mn0.5O2 cathode material for durable Na-ion batteries. J. Alloys Compd. 2021, 887, 161366.

[74]

Hao, Z. Q.; Dimov, N.; Chang, J. K.; Okada, S. Synthesis of bimetallic sulfide FeCoS4@carbon nanotube graphene hybrid as a high-performance anode material for sodium-ion batteries. Chem. Eng. J. 2021, 423, 130070.

[75]

Hu, J. H.; Liang, R.; Tang, W.; He, H. Y.; Fan, C. Synthesis of polyanionic anthraquinones as new insoluble organic cathodes for organic Na-ion batteries. Int. J. Hydrogen Energy 2020, 45, 24573–24581.

[76]

Shi, J.; Ding, L. N.; Wan, Y. H.; Mi, L. W.; Chen, L. J.; Yang, D.; Hu, Y. X.; Chen, W. H. Achieving long-cycling sodium-ion full cells in ether-based electrolyte with vinylene carbonate additive. J. Energ. Chem. 2021, 57, 650–655.

[77]

Kumar, D. R.; Kanagaraj, I.; Dhakal, G.; Prakash, A. S.; Shim, J. J. Palmyra palm tree biomass-derived carbon low-voltage plateau region capacity on Na-ion battery and its full cell performance. J Environ. Chem. Eng. 2021, 9, 105698.

[78]

Wang, N. N.; Bai, Z. C.; Qian, Y. T.; Yang, J. Double-walled Sb@TiO2−x nanotubes as a superior high-rate and ultralong-lifespan anode material for Na-ion and Li-ion batteries. Adv. Mater. 2016, 28, 4126–4133.

[79]

Mu, L. Q.; Xu, S. Y.; Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. Prototype sodium-ion batteries using an air-stable and Co/Ni-free O3-layered metal oxide cathode. Adv. Mater. 2015, 27, 6928–6933.

File
12274_2022_5435_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 October 2022
Revised: 09 December 2022
Accepted: 21 December 2022
Published: 28 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the support of the National Natural Science Foundation of China (Nos. 52271222, 51971146, 51971147, 52171218, 22005190, and 21938005). We also acknowledge the supports of Shanghai Outstanding Academic Leaders Plan, the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-07-E00015), Shanghai Pujiang Program (No. 21PJ1411100), Shanghai Rising-Star Program (Nos. 20QA1407100 and 21QA1406500), the Shanghai Science and Technology Commission (Nos. 21010503100, 20ZR1438400 and 22ZR1443900), Zhejiang Provincial Natural Science Foundation of China (No. LGG22F010017), and the Key R&D Program of Zhejiang Province (Nos. 2019C01155 and 2020C01128).

Return