Journal Home > Volume 16 , Issue 4

Due to the good manipulation of electronic structure and defect, anion regulating should be a promising strategy to regulate the electromagnetic (EM) parameters and optimize the EM wave absorption performances (EMWAPs). In this work, we proposed a facile route for the large-scale production of core@shell structured hollow carbon spheres@MoSxSe2−x (x = 0.2, 0.6, and 1.0) multicomponent nanocomposites (MCNCs) through a mild template method followed by hydrothermal process. The obtained results revealed that the designed hollow carbon spheres@MoSxSe2−x MCNCs presented the improved sulfur vacancy concentration by regulating the x value from 0.2 to 1.0. The obtained hollow carbon spheres@MoSxSe2−x MCNCs displayed the extraordinary comprehensive EMWAPs because of the introduced abundant defects and excellent interfacial effects. Furthermore, the as-prepared hollow carbon spheres@MoSxSe2−x MCNCs presented the progressively improved comprehensive EMWAPs with the x value increasing from 0.2 to 1.0, which could be explained by their boosted polarization loss abilities and impedance matching characteristics originating from the enhanced sulfur vacancy concentration. Therefore, our findings not only demonstrated that the anion regulating was a promising method to optimize EM parameters and EMWAPs, but also provided a facile route to design the transition metal dichalcogenides-based MCNCs as the much more attractive candidates for high-performance microwave absorbers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Anion regulating endows core@shell structured hollow carbon spheres@MoSxSe2−x with tunable and boosted microwave absorption performance

Show Author's information Junxiong Xiao1Xiaosi Qi1,2( )Lei Wang3Tao Jing4Jing-Liang Yang1( )Xiu Gong1Yanli Chen1Yunpeng Qu1Qiong Peng1Wei Zhong2
College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, China
National Demonstration Center for Experimental Materials Science and Engineering Education, Jiangsu University of Science and Technology, Zhenjiang 212003, China
College of Science, Kaili University, Kaili 556011, China

Abstract

Due to the good manipulation of electronic structure and defect, anion regulating should be a promising strategy to regulate the electromagnetic (EM) parameters and optimize the EM wave absorption performances (EMWAPs). In this work, we proposed a facile route for the large-scale production of core@shell structured hollow carbon spheres@MoSxSe2−x (x = 0.2, 0.6, and 1.0) multicomponent nanocomposites (MCNCs) through a mild template method followed by hydrothermal process. The obtained results revealed that the designed hollow carbon spheres@MoSxSe2−x MCNCs presented the improved sulfur vacancy concentration by regulating the x value from 0.2 to 1.0. The obtained hollow carbon spheres@MoSxSe2−x MCNCs displayed the extraordinary comprehensive EMWAPs because of the introduced abundant defects and excellent interfacial effects. Furthermore, the as-prepared hollow carbon spheres@MoSxSe2−x MCNCs presented the progressively improved comprehensive EMWAPs with the x value increasing from 0.2 to 1.0, which could be explained by their boosted polarization loss abilities and impedance matching characteristics originating from the enhanced sulfur vacancy concentration. Therefore, our findings not only demonstrated that the anion regulating was a promising method to optimize EM parameters and EMWAPs, but also provided a facile route to design the transition metal dichalcogenides-based MCNCs as the much more attractive candidates for high-performance microwave absorbers.

Keywords: microwave absorption, core@shell structure, anion regulating, hollow carbon spheres@MoSxSe2−x, interface and defect engineering

References(68)

[1]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding, and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[2]

Ye, F.; Song, Q.; Zhang, Z. C.; Li, W.; Zhang, S. Y.; Yin, X. W.; Zhou, Y. Z.; Tao, H. W.; Liu, Y. S.; Cheng, L. F. et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 2018, 28, 1707205.

[3]

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater Sci. 2022, 127, 100946.

[4]

Liu, T. T.; Cao, M. Q.; Fang, Y. S.; Zhu, Y. H.; Cao, M. S. Green building materials lit up by electromagnetic absorption function: A review. J. Mater. Sci. Technol. 2022, 112, 329–344.

[5]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core–shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[6]

Zhang, Y. L.; Kong, J.; Gu, J. W. New generation electromagnetic materials: Harvesting instead of dissipation solo. Sci. Bull. 2022, 67, 1413–1415.

[7]

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

[8]

Wu, Y.; Zhao, Y.; Zhou, M.; Tan, S. J.; Peymanfar, R.; Aslibeiki, B.; Ji, G. B. Ultrabroad microwave absorption ability and infrared stealth property of nano-micro CuS@rGO lightweight aerogels. Nano-Micro Lett. 2022, 14, 171.

[9]

Yang, B. T.; Fang, J. F.; Xu, C. Y.; Cao, H.; Zhang, R. X.; Zhao, B.; Huang, M. Q.; Wang, X. Y.; Lv, H. L.; Che, R. C. One-dimensional magnetic FeCoNi alloy toward low-frequency electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 170.

[10]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Res. 2022, 15, 7778–7787.

[11]

Cheng, Z.; Wang, R. F.; Cao, Y. S.; Cai, Z. H.; Zhang, Z. W.; Huang, Y. Intelligent off/on switchable microwave absorption performance of reduced graphene oxide/VO2 composite aerogel. Adv. Funct. Mater. 2022, 32, 2205160.

[12]

Liu, Y.; Zhou, X. F.; Jia, Z. R.; Wu, H. J.; Wu, G. L. Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 2022, 32, 2204499.

[13]

Dai, X. Y.; Du, Y. Z.; Yang, J. Y.; Wang, D.; Gu, J. W.; Li, Y. F.; Wang, S.; Xu, B. B.; Kong, J. Recoverable and self-healing electromagnetic wave absorbing nanocomposites. Compos. Sci. Technol. 2019, 174, 27–32.

[14]

Wang, Q. Q.; Niu, B.; Han, Y. H.; Zheng, Q.; Li, L.; Cao, M. S. Nature-inspired 3D hierarchical structured “vine” for efficient microwave attenuation and electromagnetic energy conversion device. Chem. Eng. J. 2023, 452, 139042.

[15]

Zhang, J. J.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Microstructure optimization of core@shell structured MSe2/FeSe2@MoSe2 (M = Co, Ni) flower-like multicomponent nanocomposites towards high-efficiency microwave absorption. J. Mater. Sci. Technol. 2022, 128, 59–70.

[16]

Qian, X.; Zhang, Y. H.; Wu, Z. C.; Zhang, R. X.; Li, X. H.; Wang, M.; Che, R. C. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance. Small 2021, 17, 2100283.

[17]

Jiao, Y. M.; Song, Q.; Yin, X. M.; Han, L. Y.; Li, W.; Li, H. J. Grow defect-rich bamboo-like carbon nanotubes on carbon black for enhanced microwave absorption properties in X band. J. Mater. Sci. Technol. 2022, 119, 200–208.

[18]

Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

[19]

Wang, H. Y.; Sun, X. B.; Yang, S. H.; Zhao, P. Y.; Zhang, X. J.; Wang, G. S.; Huang, Y. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 2021, 13, 206.

[20]

Zhou, X. F.; Jia, Z. R.; Feng, A. L.; Wang, X. X.; Liu, J. J.; Zhang, M.; Cao, H. J.; Wu, G. L. Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon 2019, 152, 827–836.

[21]

He, J.; Gao, S. T.; Zhang, Y. C.; Zhang, X. Z.; Li, H. X. N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 104, 98–108.

[22]

Pan, F.; Rao, Y. P.; Batalu, D.; Cai, L.; Dong, Y. Y.; Zhu, X. J.; Shi, Y. Y.; Shi, Z.; Liu, Y. W.; Lu, W. Macroscopic electromagnetic cooperative network-enhanced MXene/Ni chains aerogel-based microwave absorber with ultra-low matching thickness. Nano-Micro Lett. 2022, 14, 140.

[23]

Liu, S.; Xu, Q.; Bai, Y. T.; Wang, X.; Liu, X. Y.; Yan, C. Q.; Wang, Y. H.; Qin, J. Q.; Cheng, P. Toward strong X-band-electromagnetic-wave-absorbing materials: Polyimide/carbon nanotube composite aerogel with radial needle-like porous structure. J. Mater. Chem. A 2022, 10, 25140–25147.

[24]

Zhou, X. D.; Zhao, B.; Lv, H. L. Low-dimensional cobalt doped carbon composite towards wideband electromagnetic dissipation. Nano Res. 2023, 16, 70–79.

[25]

Liu, Y.; Jia, Z. R.; Zhan, Q. Q.; Dong, Y. H.; Xu, Q. M.; Wu, G. L. Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption. Nano Res. 2022, 15, 5590–5600.

[26]

Zhou, R.; Wang, Y. S.; Liu, Z. Y.; Pang, Y. Q.; Chen, J. X.; Kong, J. Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption. Nano-Micro Lett. 2022, 14, 122.

[27]

Gai, L. X.; Zhao, H. H.; Wang, F. Y.; Wang, P.; Liu, Y. L.; Han, X. J.; Du, Y. C. Advances in core–shell engineering of carbon-based composites for electromagnetic wave absorption. Nano Res. 2022, 15, 9410–9439.

[28]

Wu, G. L.; Cheng, Y. H.; Yang, Z. H.; Jia, Z. R.; Wu, H. J.; Yang, L. J.; Li, H. L.; Guo, P. Z.; Lv, H. L. Design of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behavior. Chem. Eng. J. 2018, 333, 519–528.

[29]

Han, Y. X.; He, M. K.; Hu, J. W.; Liu, P. B.; Liu, Z. W.; Ma, Z. L.; Ju, W. B.; Gu, J. W. Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 2023, 16, 1773–1778.

[30]

Wang, L.; Li, X.; Li, Q. Q.; Yu, X. F.; Zhao, Y. H.; Zhang, J.; Wang, M.; Che, R. C. Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth. Small 2019, 15, 1900900.

[31]

Zhang, X. Y.; Li, F. T.; Dong, Y. W.; Dong, B.; Dai, F. N.; Liu, C. G.; Chai, Y. M. Dynamic anion regulation to construct S-doped FeOOH realizing 1000 mA·cm−2-level-current-density oxygen evolution over 1000 h. Appl. Catal. B: Environ. 2022, 315, 121571.

[32]

Ding, S. Q.; Dai, X.; Li, Z. J.; Meng, A. L.; Wang, L.; Li, G. C.; Li, S. X. Strategy of cation/anion co-doping for potential elevating of VS4 cathode for magnesium ion batteries. Chem. Eng. J. 2022, 439, 135778.

[33]
Ahn, C. W.; Jo, J. H.; Choi, J. S.; Hwang, Y. H.; Kim, I. W.; Kim, T. H. Heteroanionic lead-free double-perovskite halides for bandgap engineering. Adv. Eng. Mater., in press, https://doi.org/10.1002/adem.202201119.
[34]

Song, J. N.; Qiu, S. Y.; Hu, F.; Ding, Y. H.; Han, S. L.; Li, L. L.; Chen, H. Y.; Han, X. P.; Sun, C. H.; Peng, S. J. Sub-2 nm thiophosphate nanosheets with heteroatom doping for enhanced oxygen electrocatalysis. Adv. Funct. Mater. 2021, 31, 2100618.

[35]

Li, Y.; Wang, X. Z.; Sun, M. H.; Zhao, Z. B.; Wang, Z. Y.; Qiu, J. S. Nico (oxy)selenide electrocatalysts via anionic regulation for high-performance lithium-sulfur batteries. J. Mater. Chem. A 2022, 10, 5410–5419.

[36]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Enhancing the low/middle-frequency electromagnetic wave absorption of metal sulfides through F regulation engineering. Adv. Funct. Mater. 2022, 32, 2110496.

[37]

Hueckel, T.; Sacanna, S. Mix-and-melt colloidal engineering. ACS Nano 2018, 12, 3533–3540.

[38]

Wang, W. W.; Yi, L. T.; Zheng, Y. Z.; Lu, J.; Jiang, A. S.; Wang, D. Photochromic and mechanochromic cotton fabric for flexible rewritable media based on acrylate latex with spiropyran cross-linker. Compos. Commun. 2023, 37, 101455.

[39]

Xu, H. X.; Zhang, G. Z.; Wang, Y.; Ning, M. Q.; Ouyang, B.; Zhao, Y.; Huang, Y.; Liu, P. B. Size-dependent oxidation-induced phase engineering for MOFs derivatives via spatial confinement strategy toward enhanced microwave absorption. Nano-Micro Lett. 2022, 14, 102.

[40]

Yu, H.; Zeng, Y. X.; Li, N. W.; Luan, D. Y.; Yu, L.; Lou, X. W. Confining Sn nanoparticles in interconnected N-doped hollow carbon spheres as hierarchical zincophilic fibers for dendrite-free Zn metal anodes. Sci. Adv. 2022, 8, eabm5766.

[41]

Fu, X. Y.; Zheng, Q.; Li, L.; Cao, M. S. Vertically implanting MoSe2 nanosheets on the rGO sheets towards excellent multi-band microwave absorption. Carbon 2022, 197, 324–333.

[42]

Sun, S. B.; Shi, Z. C.; Sun, L.; Liang, L.; Dastan, D.; He, B. L.; Wang, H. L.; Huang, M. H.; Fan, R. H. Achieving concurrent high energy density and efficiency in all-polymer layered paraelectric/ferroelectric composites via introducing a moderate layer. ACS Appl. Mater. Interfaces 2021, 13, 27522–27532.

[43]

Tian, Z. H.; Chui, N. B.; Lian, R. Q.; Yang, Q. F.; Wang, W.; Yang, C.; Rao, D. W.; Huang, J. J.; Zhang, Y. W.; Lai, F. L. et al. Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: A free-standing anode for high-performance potassium-ion storage. Energy Storage Mater. 2020, 27, 591–598.

[44]

Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

[45]

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

[46]

Zhang, Z.; Xiong, Z. M.; Yao, Y.; Wang, D. R.; Yang, Z. Q.; Zhang, P.; Zhao, Q.; Zhou, W. K. Constructing conductive network in hybrid perovskite for a highly efficient microwave absorption system. Adv. Funct. Mater. 2022, 32, 2206053.

[47]

Ning, M. Q.; Man, Q. K.; Tan, G. G.; Lei, Z. K.; Li, J. B.; Li, R. W. Ultrathin MoS2 nanosheets encapsulated in hollow carbon spheres: A case of a dielectric absorber with optimized impedance for efficient microwave absorption. ACS Appl. Mater. Interfaces 2020, 12, 20785–20796.

[48]

Su, J.; Nie, Z. G.; Feng, Y.; Hu, X. M.; Li, H. M.; Zhao, Z. Y.; Zan, S. Y.; Qi, S. H. Hollow core–shell structure Co/C@MoSe2 composites for high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107140.

[49]

Ning, M. Q.; Jiang, P. H.; Ding, W.; Zhu, X. B.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 2021, 31, 2011229.

[50]

Yu, R. R.; Xia, Y. H.; Pei, X. Y.; Liu, D.; Liu, S. K.; Shao, R. Q.; Yin, Y.; Min, C. Y.; Xu, Z. W.; Wang, W. et al. Micro-flower like core–shell structured ZnCo@C@1T-2H-MoS2 composites for broadband electromagnetic wave absorption and photothermal performance. J. Colloid Interface Sci. 2022, 622, 261–271.

[51]

Chang, M.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. Part B Eng. 2021, 225, 109306.

[52]

Liao, Z. J.; Ma, M. L.; Bi, Y. X.; Tong, Z. Y.; Chung, K. L.; Li, Z. J.; Ma, Y.; Gao, B. L.; Cao, Z. K.; Sun, R. R. et al. MoS2 decorated on one-dimensional MgFe2O4/MgO/C composites for high-performance microwave absorption. J. Colloid Interface Sci. 2022, 606, 709–718.

[53]

Bi, Y. X.; Ma, M. L.; Liu, Y. Y.; Tong, Z. Y.; Wang, R. Z.; Chung, K. L.; Ma, A. J.; Wu, G. L.; Ma, Y.; He, C. P. et al. Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPy composites derived from metal–organic framework. J. Colloid Interface Sci. 2021, 600, 209–218.

[54]

Liu, Z. C.; Pan, F.; Deng, B. W.; Xiang, Z.; Lu, W. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 2021, 174, 59–69.

[55]

Xu, Z. J.; He, M.; Zhou, Y. M.; Nie, S. X.; Wang, Y. J.; Huo, Y.; Kang, Y. F.; Wang, R. L.; Xu, R.; Peng, H. et al. Spider web-like carbonized bacterial cellulose/MoSe2 nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Res. 2021, 14, 738–746.

[56]

Sun, L.; Shi, Z. C.; He, B. L.; Wang, H. L.; Liu, S.; Huang, M. H.; Shi, J.; Dastan, D.; Wang, H. Asymmetric trilayer all-polymer dielectric composites with simultaneous high efficiency and high energy density: A novel design targeting advanced energy storage capacitors. Adv. Funct. Mater. 2021, 31, 2100280.

[57]

Xiao, J. X.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Tunable and improved microwave absorption of flower-like core@shell MFe2O4@MoS2 (M = Mn, Ni, and Zn) nanocomposites by defect and interface engineering. J. Mater. Sci. Technol. 2023, 139, 137–146.

[58]

He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

[59]

Liu, Y. D.; Chen, Y.; Tian, Y. H.; Sakthivel, T.; Liu, H.; Guo, S. W.; Zeng, H. B.; Dai, Z. F. Synergizing hydrogen spillover and deprotonation by the internal polarization field in a MoS2/NiPS3 vertical heterostructure for boosted water electrolysis. Adv. Mater. 2022, 34, 2203615.

[60]

Cai, M. Y.; Zhang, H. H.; Zhang, Y. G.; Xiao, B. S.; Wang, L.; Li, M.; Wu, Y.; Sa, B. S.; Liao, H. G.; Zhang, L. et al. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci. Bull. 2022, 67, 933–945.

[61]

Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res. 2022, 15, 7731–7741.

[62]

Lu, S. R.; Xia, L.; Xu, J. M.; Ding, C. H.; Li, T. T.; Yang, H.; Zhong, B.; Zhang, T.; Huang, L. N.; Xiong, L. et al. Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGO nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18626–18636.

[63]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[64]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[65]

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

[66]

Froyen, S. Brillouin-zone integration by fourier quadrature: Special points for superlattice and supercell calculations. Phys. Rev. B 1989, 39, 3168–3172.

[67]

Wang, F.; Gu, W. H.; Chen, J. B.; Wu, Y.; Zhou, M.; Tang, S. H.; Cao, X. Z.; Zhang, P.; Ji, G. B. The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability. Nano Res. 2022, 15, 3720–3728.

[68]

Wang, X. X.; Cao, W. Q.; Cao, M. S.; Yuan, J. Assembling nano-microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 2020, 32, 2002112.

File
12274_2023_5433_MOESM1_ESM.pdf (613.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 November 2022
Revised: 17 December 2022
Accepted: 20 December 2022
Published: 21 January 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

This work was financially supported by the Doctorial Start-up Fund of Guizhou University (No. 2011-05), the Fund of Fok Ying Tung Education Foundation, the Major Research Project of innovative Group of Guizhou province (No. 2018-013), the Guizhou Provincial Science and Technology Projects (No. ZK 2022-General 044), and the National Science Foundation of China (Nos. 11604060 and 11964006).

Return