Journal Home > Volume 16 , Issue 4

The oxygen atom coordination inducing the structure reconstruction of the catalytic site is identified and recognized ambiguously, which is related to accurately declare the mechanism in a dynamic catalytic process. Herein, we demonstrated that the reconstructed catalytic sites would lead to a remarkable performance for photocatalytic CO2 reduction. At the initial 4-cycles testing, the in-situ formation of CoOx active sites on the Co (CoP) surface performed an increasing transient activity and selectivity toward CO evolution. The formation of reconstructive Co-O bond and the appearance of intermediate specie CO were simultaneously observed by the pre-operando Raman, revealing the dynamic relationship between catalytic site structure and the photocatalytic properties. Moreover, density functional theory calculations showed that the electronic structure of the reconstructive surface sites could modulate the ability of CO2 adsorption and CO desorption. The reduced barrier energy for the rate-determining step finally improved the activity and selectivity of CO2 reduction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Operando reconstruction-induced CO2 reduction activity and selectivity for cobalt-based photocatalysis

Show Author's information Kun Zhao1,§( )Weiying Pang1,§Shuaiyu Jiang3,§Canyu Hu4Porun Liu3Dandan Cui5Xuefei An1Baojuan Tian1Chao Gao4Pan Zhang1Meng Tian2( )Dong Fu1( )Huijun Zhao3( )
Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin 214443, China
Centre for Catalysis and Clean Energy, Griffith University Gold Coast Campus, LD 4222, Australia
Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovative Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
School of Physics and BUAA-UOW Joint Research Centre, Beihang University, Beijing 100191, China

§ Kun Zhao, Weiying Pang, and Shuaiyu Jiang contributed equally to this work.

Abstract

The oxygen atom coordination inducing the structure reconstruction of the catalytic site is identified and recognized ambiguously, which is related to accurately declare the mechanism in a dynamic catalytic process. Herein, we demonstrated that the reconstructed catalytic sites would lead to a remarkable performance for photocatalytic CO2 reduction. At the initial 4-cycles testing, the in-situ formation of CoOx active sites on the Co (CoP) surface performed an increasing transient activity and selectivity toward CO evolution. The formation of reconstructive Co-O bond and the appearance of intermediate specie CO were simultaneously observed by the pre-operando Raman, revealing the dynamic relationship between catalytic site structure and the photocatalytic properties. Moreover, density functional theory calculations showed that the electronic structure of the reconstructive surface sites could modulate the ability of CO2 adsorption and CO desorption. The reduced barrier energy for the rate-determining step finally improved the activity and selectivity of CO2 reduction.

Keywords: surface reconstruction, photocatalytic CO2 reduction, balanced relationship, unsaturated Co-Ox catalytic site

References(27)

[1]

Zhao, S. L.; Yang, Y. C.; Tang, Z. Y. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew. Chem., Int. Ed. 2022, 61, e202110186.

[2]

Kreft, S.; Schoch, R.; Schneidewind, J.; Rabeah, J.; Kondratenko, E. V.; Kondratenko, V. A.; Junge, H.; Bauer, M.; Wohlrab, S.; Beller, M. Improving selectivity and activity of CO2 reduction photocatalysts with oxygen. Chem 2019, 5, 2276.

[3]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[4]

Peter, S. C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis. ACS Energy Lett. 2018, 3, 1557–1561.

[5]

Wang, S. B.; Wang, Y.; Zang, S. Q.; Lou, X. W. Hierarchical hollow heterostructures for photocatalytic CO2 reduction and water splitting. Small Methods 2020, 4, 1900586.

[6]

Zhao, K.; Zhao, S. L.; Gao, C.; Qi, J.; Yin, H. J.; Wei, D.; Mideksa, M. F.; Wang, X. L.; Gao, Y.; Tang, Z. Y.; Yu, R. B. Metallic cobalt-carbon composite as recyclable and robust magnetic photocatalyst for efficient CO2 reduction. Small 2018, 14, 1800762.

[7]

Zhuang, G. X.; Yang, B. X.; Jiang, W. S.; Ou, X. W.; Zhao, L.; Wen, Y. L.; Zhuang, Z. Y.; Lin, Z.; Yu, Y. Spatially separated oxygen vacancies and nickel sites for ensemble promotion of selective CO2 photoreduction to CO. Cell Rep. Phys. Sci. 2022, 3, 100724.

[8]

Gao, C.; Chen, S. M.; Wang, Y.; Wang, J. W.; Zheng, X. S.; Zhu, J. F.; Song, L.; Zhang, W. K.; Xiong, Y. J. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Adv. Mater. 2018, 30, 1704624.

[9]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[10]

Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

[11]

Wang, G.; He, C. T.; Huang, R.; Mao, J. J.; Wang, D. S.; Li, Y. D. Photoinduction of Cu single atoms decorated on UiO-66-NH2 for enhanced photocatalytic reduction of CO2 to liquid fuels. J. Am. Chem. Soc. 2020, 142, 19339–19345.

[12]

Wei, J. S.; Meng, F. L.; Li, T. T.; Zhang, T. X.; Xi, S. B.; Ong, W. L.; Wang, X. Q.; Zhang, X. Y.; Bosman, M.; Ho, G. W. Spontaneous atomic sites formation in wurtzite CoO nanorods for robust CO2 photoreduction. Adv. Funct. Mater. 2022, 32, 2109693.

[13]

Daniel, Q.; Ambre, R. B.; Zhang, B. B.; Philippe, B.; Chen, H.; Li, F. S.; Fan, K.; Ahmadi, S.; Rensmo, H.; Sun, L. C. Re-investigation of cobalt porphyrin for electrochemical water oxidation on FTO surface: Formation of CoOx as active species. ACS Catal. 2017, 7, 1143–1149.

[14]

Soltani, T.; Zhu, X.; Yamamoto, A.; Singh, S. P.; Fudo, E.; Tanaka, A.; Kominami, H.; Yoshida, H. Effect of transition metal oxide cocatalyst on the photocatalytic activity of Ag loaded CaTiO3 for CO2 reduction with water and water splitting. Appl. Catal. B: Enciron. 2021, 286, 119899.

[15]

Xue, J. W.; Fujitsuka, M.; Majima, T. Defect-mediated electron transfer in photocatalysts. Chem. Commun. 2021, 57, 3532–3542.

[16]

Song, S. Z.; Zhou, J.; Su, X. Z.; Wang, Y.; Li, J.; Zhang, L. J.; Xiao, G. P.; Guan, C. Z.; Liu, R. D.; Chen, S. G. et al. Operando X-ray spectroscopic tracking of self-reconstruction for anchored nanoparticles as high-performance electrocatalysts towards oxygen evolution. Energy Environ. Sci. 2018, 11, 2945–2953.

[17]

Li, R. L.; Rao, D. W.; Zhou, J. B.; Wu, G.; Wang, G. Z.; Zhu, Z. X.; Han, X.; Sun, R. B.; Li, H.; Wang, C. et al. Amorphization-induced surface electronic states modulation of cobaltous oxide nanosheets for lithium-sulfur batteries. Nat. Commun. 2021, 12, 3102.

[18]

Regan, T. J.; Ohldag, H.; Stamm, C.; Nolting, F.; Lüning, J.; Stöhr, J.; White, R. L. Chemical effects at metal/oxide interfaces studied by X-ray-absorption spectroscopy. Phys. Rev. B 2001, 64, 214422.

[19]

Cui, Z. Z.; Xu, H.; Yun, Y.; Guo, J. H.; Chuang, Y. D.; Huang, H. L.; Meng, D. C.; Wang, J. L.; Fu, Z. P.; Peng, R. R. et al. Soft X-ray absorption spectroscopy investigations of Bi6FeCoTi3O18 and LaBi5FeCoTi3O18 epitaxial thin films. J. Appl. Phys. 2016, 120, 084101.

[20]

Long, X. H.; Yu, P. F.; Zhang, N.; Li, C.; Feng, X. F.; Ren, G. X.; Zheng, S.; Fu, J. M.; Cheng, F. Y.; Liu, X. S. Direct spectroscopy for probing the critical role of partial covalency in oxygen reduction reaction for cobalt-manganese spinel oxides. Nanomaterials 2019, 9, 577.

[21]

Jiang, Y. W.; Wang, X. Y.; Duan, D. L.; He, C. H.; Ma, J.; Zhang, W. Q.; Liu, H. J.; Long, R.; Li, Z. B.; Kong, T. T. et al. Structural reconstruction of Cu2O superparticles toward electrocatalytic CO2 reduction with high C2+ products selectivity. Adv. Sci. 2022, 9, 2105292.

[22]

Nørskov, J. K. Electronic factors in catalysis. Prog. Surf. Sci. 1991, 38, 103–144.

[23]

Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

[24]

Nie, X. W.; Wang, H. Z.; Liang, Z. M.; Yu, Z. Z.; Zhang, J. J.; Janik, M. J.; Guo, X. W.; Song, C. S. Comparative computational study of CO2 dissociation and hydrogenation over Fe-M (M = Pd, Ni, Co) bimetallic catalysts: The effect of surface metal content. J. CO2 Util. 2019, 29, 179–195.

[25]

Zhou, T.; Xu, Z. Y.; Wang, R.; Dong, X. Y.; Fu, Q.; Liu, Y. S. Crystal growth regulation of 2D/3D perovskite films for solar cells with both high efficiency and stability. Adv. Mater. 2022, 34, 2200705.

[26]

Jiang, S. Y.; Liu, J. X.; Zhao, K.; Cui, D. D.; Liu, P. R.; Yin, H. J.; Al-Mamun, M.; Lowe, S. E.; Zhang, W. P.; Zhong, Y. L. et al. Ru(bpy)32+-sensitized {001} facets LiCoO2 nanosheets catalyzed CO2 reduction reaction with 100% carbonaceous products. Nano Res. 2022, 15, 1061–1068.

[27]

Hu, Y. G.; Zhan, F.; Wang, Q.; Sun, Y. J.; Yu, C.; Zhao, X.; Wang, H.; Long, R.; Zhang, G. Z.; Gao, C. et al. Tracking mechanistic pathway of photocatalytic CO2 reaction at Ni sites using operando, time-resolved spectroscopy. J. Am. Chem. Soc. 2020, 142, 5618–5626.

File
12274_2023_5432_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 November 2022
Revised: 19 December 2022
Accepted: 20 December 2022
Published: 23 January 2023
Issue date: April 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (Nos. 51776072, 42007327, and 41731279), the Fundamental Research Funds for the Central Universities (No. 2021MS098), the Natural Science Foundation of Hebei Province (No. B2022502005), and the Natural Science Foundation of Jiangsu Province (No. BK20220930). The authors acknowledge that the XAS measurements were performed using [AS183/XAS/14123] beamline of Australian Synchrotron facility. We also thank Zumin Wang’s constructive suggestion and kind help with the manuscript revision.

Return