Journal Home > Volume 16 , Issue 5

Given the grim situation of global warming and energy crisis, replacing traditional energy conversions based on carbon cycle with water cycle is a sustainable development trend. The synergistic electrocatalysis for value-added chemical production through oxygen species (Oads: OH*, O*, and OOH*) and the active hydrogen species (Hads) derived from water splitting powered by “green” electricity from renewable energy resource (wind, solar, etc.) is a promising manner, because of its reduced energy consumption and emission and high Faradaic efficiency. The study and summarization of catalytic mechanism of synergistic electrocatalysis are particularly significant, but are rarely involved. In this review, recent progress of various synergistic electrocatalysis systems for generating valuable products based on water cycle is systematically summarized. Importantly, the catalytic mechanism of synergistic electrocatalysis and the positive effect of Oads and Hads species produced by water splitting during the synergistic electrocatalytsis are detailedly elucidated. Furthermore, the regulation of water-derived Oads and Hads species for achieving efficient matchability of synergistic electrocatalysis is emphatically discussed. Finally, we propose the limitations and future goals of this synergistic system based on water cycle. This review is guidance for design of synergistic electrocatalysis architectures for producing valuable substances based on water cycle.


menu
Abstract
Full text
Outline
About this article

Recent progress in synergistic electrocatalysis for generation of valuable products based on water cycle

Show Author's information Yue LiYanqing JiaoHaijing Yan( )Chungui TianAiping WuHonggang Fu( )
Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China

Abstract

Given the grim situation of global warming and energy crisis, replacing traditional energy conversions based on carbon cycle with water cycle is a sustainable development trend. The synergistic electrocatalysis for value-added chemical production through oxygen species (Oads: OH*, O*, and OOH*) and the active hydrogen species (Hads) derived from water splitting powered by “green” electricity from renewable energy resource (wind, solar, etc.) is a promising manner, because of its reduced energy consumption and emission and high Faradaic efficiency. The study and summarization of catalytic mechanism of synergistic electrocatalysis are particularly significant, but are rarely involved. In this review, recent progress of various synergistic electrocatalysis systems for generating valuable products based on water cycle is systematically summarized. Importantly, the catalytic mechanism of synergistic electrocatalysis and the positive effect of Oads and Hads species produced by water splitting during the synergistic electrocatalytsis are detailedly elucidated. Furthermore, the regulation of water-derived Oads and Hads species for achieving efficient matchability of synergistic electrocatalysis is emphatically discussed. Finally, we propose the limitations and future goals of this synergistic system based on water cycle. This review is guidance for design of synergistic electrocatalysis architectures for producing valuable substances based on water cycle.

Keywords: synergistic electrocatalysis, water cycle, valuable products, active oxygen and hydrogen species

References(191)

[1]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[2]

Logan, B. E.; Rabaey, K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 2012, 337, 686–690.

[3]

Guo, D. Z.; Li, X.; Jiao, Y. Q.; Yan, H. J.; Wu, A. P.; Yang, G. C.; Wang, Y.; Tian, C. G.; Fu, H. G. A dual-active Co-CoO heterojunction coupled with Ti3C2-MXene for highly-performance overall water splitting. Nano Res. 2022, 15, 238–247.

[4]

Jin, K.; Maalouf, J. H.; Lazouski, N.; Corbin, N.; Yang, D. T.; Manthiram, K. Epoxidation of cyclooctene using water as the oxygen atom source at manganese oxide electrocatalysts. J. Am. Chem. Soc. 2019, 141, 6413–6418.

[5]

Li, F. S.; Yang, H.; Li, W. L.; Sun, L. C. Device fabrication for water oxidation, hydrogen generation, and CO2 reduction via molecular engineering. Joule 2018, 2, 36–60.

[6]

Li, W.; Jiang, N.; Hu, B.; Liu, X.; Song, F. Z.; Han, G. Q.; Jordan, T. J.; Hanson, T. B.; Liu, T. L.; Sun, Y. J. Electrolyzer design for flexible decoupled water splitting and organic upgrading with electron reservoirs. Chem 2018, 4, 637–649.

[7]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

[8]

Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.

[9]

Wang, D. X.; Kang, X.; Gu, Y.; Zhang, H. Y.; Liu, J. C.; Wu, A. P.; Yan, H. J.; Tian, C. G.; Fu, H. G. Electronic tuning of Ni by Mo species for highly efficient hydroisomerization of n-alkanes comparable to Pt-based catalysts. ACS Catal. 2020, 10, 10449–10458.

[10]

Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

[11]

Wang, J. H.; Cui, W.; Liu, Q.; Xing, Z. C.; Asiri, A. M.; Sun, X. P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230.

[12]

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

[13]

Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299–3309.

[14]

Niu, C. H.; Zhang, Y. X.; Dong, J.; Yuan, R. X.; Kou, W.; Xu, L. B. 3D ordered macro-/mesoporous NixCo100−x alloys as high-performance bifunctional electrocatalysts for overall water splitting. Chin. Chem. Lett. 2021, 32, 2484–2488.

[15]

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

[16]

Yuan, Y.; Lei, A. W. Electrochemical oxidative cross-coupling with hydrogen evolution reactions. Acc. Chem. Res. 2019, 52, 3309–3324.

[17]

Ke, F.; Xu, Y. W.; Zhu, S. N.; Lin, X. Y.; Lin, C.; Zhou, S. Y.; Su, H. M. Electrochemical N-acylation synthesis of amides under aqueous conditions. Green Chem. 2019, 21, 4329–4333.

[18]

Zhou, H.; Li, Z. H.; Ma, L. N.; Duan, H. H. Electrocatalytic oxidative upgrading of biomass platform chemicals: From the aspect of reaction mechanism. Chem. Commun. 2022, 58, 897–907.

[19]

Zhou, H.; Ren, Y.; Li, Z. H.; Xu, M.; Wang, Y.; Ge, R. X.; Kong, X. G.; Zheng, L. R.; Duan, H. H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.

[20]

You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

[21]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L. Electrocatalytic hydrogen production trilogy. Angew. Chem., Int. Ed. 2021, 60, 19550–19571.

[22]

Deng, C.; Toe, C. Y.; Li, X.; Tan, J. J.; Yang, H. P.; Hu, Q.; He, C. X. Earth-abundant metal-based electrocatalysts promoted anodic reaction in hybrid water electrolysis for efficient hydrogen production: Recent progress and perspectives. Adv. Energy Mater. 2022, 12, 2201047.

[23]

Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

[24]

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

[25]

Zhu, J. Y.; Xue, Q.; Xue, Y. Y.; Ding, Y.; Li, F. M.; Jin, P. J.; Chen, P.; Chen, Y. Iridium nanotubes as bifunctional electrocatalysts for oxygen evolution and nitrate reduction reactions. ACS Appl. Mater. Interfaces 2020, 12, 14064–14070.

[26]

Wang, Y. T.; Zhou, W.; Jia, R. R.; Yu, Y. F.; Zhang, B. Unveiling the activity origin of a copper-based electrocatalyst for selective nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2020, 59, 5350–5354.

[27]

Wang, J. L.; Jin, M.; Sun, Y. Y.; Zhang, H. M. Pt-modified MoO3 catalyst for the electrochemically selective C=O hydrogenation of cinnamaldehyde. Chem. Commun. 2022, 58, 6721–6724.

[28]

Wu, S. T.; Huang, X.; Zhang, H. L.; Wei, Z. D.; Wang, M. Efficient electrochemical hydrogenation of nitroaromatics into arylamines on a CuCo2O4 spinel cathode in an alkaline electrolyte. ACS Catal. 2022, 12, 58–65.

[29]

Li, M. Y.; Liu, C. B.; Zhang, B. Using water as the hydrogen source for electrocatalytic transfer hydrogen storage. Sci. Bull. 2021, 66, 1047–1049.

[30]

Zhao, Y. G.; Liu, C. B.; Wang, C. H.; Chong, X. D.; Zhang, B. Sulfur vacancy-promoted highly selective electrosynthesis of functionalized aminoarenes via transfer hydrogenation of nitroarenes with H2O over a Co3S4−x nanosheet cathode. CCS Chem. 2021, 3, 507–515.

[31]

Wu, Y. M.; Liu, C. B.; Wang, C. H.; Yu, Y. F.; Shi, Y. M.; Zhang, B. Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nat. Commun. 2021, 12, 3881.

[32]

Wu, Y. M.; Liu, C. B.; Wang, C. H.; Lu, S. Y.; Zhang, B. Selective transfer semihydrogenation of alkynes with H2O (D2O) as the H (D) source over a Pd-P cathode. Angew. Chem., Int. Ed. 2020, 59, 21170–21175.

[33]

Zhao, Y.; Xing, S. H.; Meng, X. Y.; Zeng, J. H.; Yin, S. B.; Li, X. F.; Chen, Y. Ultrathin Rh nanosheets as a highly efficient bifunctional electrocatalyst for isopropanol-assisted overall water splitting. Nanoscale 2019, 11, 9319–9326.

[34]

Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

[35]

Hu, C. L.; Zhang, L.; Gong, J. L. Recent progress made in the mechanism comprehension and design of electrocatalysts for alkaline water splitting. Energy Environ. Sci. 2019, 12, 2620–2645.

[36]

Lu, S. S.; Shi, Y. M.; Zhou, W.; Zhang, Z. P.; Wu, F.; Zhang, B. Dissolution of the heteroatom dopants and formation of ortho-quinone moieties in the doped carbon materials during water electrooxidation. J. Am. Chem. Soc. 2022, 144, 3250–3258.

[37]

Lu, S. S.; Zhou, W.; Shi, Y. M.; Liu, C. B.; Yu, Y. F.; Zhang, B. Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. Chem 2022, 8, 1415–1426.

[38]

Yu, P.; Wang, L.; Sun, F. F.; Xie, Y.; Liu, X.; Ma, J. Y.; Wang, X. W.; Tian, C. G.; Li, J. H.; Fu, H. G. Co nanoislands rooted on Co-N-C nanosheets as efficient oxygen electrocatalyst for Zn-air batteries. Adv. Mater. 2019, 31, 1901666.

[39]

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A stable bifunctional catalyst for rechargeable zinc-air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

[40]

Tong, M. M.; Sun, F. F.; Xie, Y.; Wang, Y.; Yang, Y. Q.; Tian, C. G.; Wang, L.; Fu, H. G. Operando cooperated catalytic mechanism of atomically dispersed Cu-N4 and Zn-N4 for promoting oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 14005–14012.

[41]

Tong, M. M.; Yu, P.; Xie, Y.; Wang, L.; Wang, Y.; Fu, H. G. Atomically dispersed Fe-N3C sites induce asymmetric electron structures to afford superior oxygen reduction activity. Small 2022, 18, 2201255.

[42]

Huang, C. Q.; Huang, Y.; Liu, C. B.; Yu, Y. F.; Zhang, B. Integrating hydrogen production with aqueous selective semi-dehydrogenation of tetrahydroisoquinolines over a Ni2P bifunctional electrode. Angew. Chem., Int. Ed. 2019, 58, 12014–12017.

[43]

Zheng, J.; Chen, X. L.; Zhong, X.; Li, S. Q.; Liu, T. Z.; Zhuang, G. L.; Li, X. N.; Deng, S. W.; Mei, D. H.; Wang, J. G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Adv. Funct. Mater. 2017, 27, 1704169.

[44]

Zhou, H.; Li, Z. H.; Xu, S. M.; Lu, L. L.; Xu, M.; Ji, K. Y.; Ge, R. X.; Yan, Y. F.; Ma, L. N.; Kong, X. G. et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)–C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst. Angew. Chem., Int. Ed. 2021, 60, 8976–8982.

[45]

Varela, A. S.; Ju, W.; Strasser, P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv. Energy Mater. 2018, 8, 1703614.

[46]

Gao, J. N.; Jiang, B.; Ni, C. C.; Qi, Y. F.; Bi, X. J. Enhanced reduction of nitrate by noble metal-free electrocatalysis on P doped three-dimensional Co3O4 cathode: Mechanism exploration from both experimental and DFT studies. Chem. Eng. J. 2020, 382, 123034.

[47]

Zhang, J. F.; Xu, Y.; Zhang, B. Facile synthesis of 3D Pd-P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chem. Commun. 2014, 50, 13451–13453.

[48]

Li, R.; Wu, Y. M.; Wang, C. H.; He, M.; Liu, C. B.; Zhang, B. One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α, β-deuterio aryl ethylamines. Nat. Commun. 2022, 13, 5951.

[49]

Guo, S. S.; Wu, Y. M.; Wang, C. H.; Gao, Y.; Li, M. Y.; Zhang, B.; Liu, C. B. Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst. Nat. Commun. 2022, 13, 5297.

[50]

Xu, Y.; Zhang, B. Recent advances in electrochemical hydrogen production from water assisted by alternative oxidation reactions. ChemElectroChem 2019, 6, 3214–3226.

[51]

Jiang, J.; Li, F. Y.; Su, H.; Gao, Y. Q.; Li, N.; Ge, L. Flower-like NiCo2S4/NiFeP/NF composite material as an effective electrocatalyst with high overall water splitting performance. Chin. Chem. Lett. 2022, 33, 4367–4374.

[52]

Zhang, Z. H.; Huber, G. W. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem. Soc. Rev. 2018, 47, 1351–1390.

[53]

Sheldon, R. A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014, 16, 950–963.

[54]

Ding, Y.; Li, Y.; Xue, Y. Y.; Miao, B. Q.; Li, S.; Jiang, Y. C.; Liu, X. E.; Chen, Y. Atomically thick Ni(OH)2 nanomeshes for urea electrooxidation. Nanoscale 2019, 11, 1058–1064.

[55]

Liu, M. M.; Zhang, R. Z.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.

[56]

Lan, R.; Tao, S. W.; Irvine, J. T. S. A direct urea fuel cell-power from fertiliser and waste. Energy Environ. Sci. 2010, 3, 438–441.

[57]

Sayed, E. T.; Eisa, T.; Mohamed, H. O.; Abdelkareem, M. A.; Allagui, A.; Alawadhi, H.; Chae, K. J. Direct urea fuel cells: Challenges and opportunities. J. Power Sources 2019, 417, 159–175.

[58]

Geng, S. K.; Zheng, Y.; Li, S. Q.; Su, H.; Zhao, X.; Hu, J.; Shu, H. B.; Jaroniec, M.; Chen, P.; Liu, Q. H. et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nat. Energy 2021, 6, 904–912.

[59]

Ye, K.; Wang, G.; Cao, D. X.; Wang, G. X. Recent advances in the electro-oxidation of urea for direct urea fuel cell and urea electrolysis. Top. Curr. Chem. 2018, 376, 42.

[60]

Zhang, J. Y.; He, T.; Wang, M. D.; Qi, R. J.; Yan, Y.; Dong, Z. H.; Liu, H. F.; Wang, H. M.; Xia, B. Y. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy 2019, 60, 894–902.

[61]

Zhang, L. S.; Wang, L. P.; Lin, H. P.; Liu, Y. X.; Ye, J. Y.; Wen, Y. Z.; Chen, A.; Wang, L.; Ni, F. L.; Zhou, Z. Y. et al. A lattice-oxygen-involved reaction pathway to boost urea oxidation. Angew. Chem., Int. Ed. 2019, 58, 16820–16825.

[62]

Sun, C. B.; Guo, M. W.; Siwal, S. S.; Zhang, Q. B. Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect. J. Catal. 2020, 381, 454–461.

[63]

Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2016, 55, 12465–12469.

[64]

Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.

[65]

Zhang, J. Y.; Wang, H. M.; Tian, Y. F.; Yan, Y.; Xue, Q.; He, T.; Liu, H. F.; Wang, C. D.; Chen, Y.; Xia, B. Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem., Int. Ed. 2018, 57, 7649–7653.

[66]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A General strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[67]

Zhu, Y.; Zhang, J. H.; Qian, Q. Z.; Li, Y. P.; Li, Z. Y.; Liu, Y.; Xiao, C.; Zhang, G. Q.; Xie, Y. Dual nanoislands on Ni/C hybrid nanosheet activate superior hydrazine oxidation-assisted high-efficiency H2 production. Angew. Chem., Int. Ed. 2022, 61, e202113082.

[68]

Zhai, X. J.; Yu, Q. P.; Liu, G. S.; Bi, J. L.; Zhang, Y.; Chi, J. Q.; Lai, J. P.; Yang, B.; Wang, L. Hierarchical microsphere MOF arrays with ultralow Ir doping for efficient hydrogen evolution coupled with hydrazine oxidation in seawater. J. Mater. Chem. A 2021, 9, 27424–27433.

[69]

Take, T.; Tsurutani, K.; Umeda, M. Hydrogen production by methanol-water solution electrolysis. J. Power Sources 2007, 164, 9–16.

[70]

Yang, W. J.; Li, J. J.; Cui, X. Y.; Yang, C. H.; Liu, Y. T.; Zeng, X. W.; Zhang, Z. C.; Zhang, Q. T. Fine-tuning inverse metal–support interaction boosts electrochemical transformation of methanol into formaldehyde based on density functional theory. Chin. Chem. Lett. 2021, 32, 2489–2494.

[71]

Yan, H. J.; Meng, M. C.; Wang, L.; Wu, A. P.; Tian, C. G.; Zhao, L.; Fu, H. G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2016, 9, 329–343.

[72]

Fang, B.; Liu, Z.; Bao, Y. F.; Feng, L. G. Unstable Ni leaching in MOF-derived PtNi-C catalyst with improved performance for alcohols fuel electro-oxidation. Chin. Chem. Lett. 2020, 31, 2259–2262.

[73]

Zhao, B.; Liu, J. W.; Xu, C. Y.; Feng, R. F.; Sui, P. F.; Wang, L.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 2021, 31, 2008812.

[74]

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

[75]

Zhao, B.; Liu, J. W.; Yin, Y. R.; Wu, D.; Luo, J. L.; Fu, X. Z. Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. J. Mater. Chem. A 2019, 7, 25878–25886.

[76]

Li, M.; Deng, X. H.; Liang, Y.; Xiang, K.; Wu, D.; Zhao, B.; Yang, H. P.; Luo, J. L.; Fu, X. Z. CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 2020, 50, 314–323.

[77]

Wei, X. F.; Wang, S.; Hua, Z. L.; Chen, L. S.; Shi, J. L. Metal-organic framework nanosheet electrocatalysts for efficient H2 production from methanol solution: Methanol-assisted water splitting or methanol reforming? ACS Appl. Mater. Interfaces 2018, 10, 25422–25428.

[78]

Zhao, X. J.; Dai, L.; Qin, Q.; Pei, F.; Hu, C. Y.; Zheng, N. F. Self-supported 3D PdCu alloy nanosheets as a bifunctional catalyst for electrochemical reforming of ethanol. Small 2017, 13, 1602970.

[79]

Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.

[80]

Dai, L.; Qin, Q.; Zhao, X. J.; Xu, C. F.; Hu, C. Y.; Mo, S. G.; Wang, Y. O.; Lin, S. C.; Tang, Z. C.; Zheng, N. F. Electrochemical partial reforming of ethanol into ethyl acetate using ultrathin Co3O4 nanosheets as a highly selective anode catalyst. ACS Cent. Sci. 2016, 2, 538–544.

[81]

Chen, G. F.; Luo, Y. R.; Ding, L. X.; Wang, H. H. Low-voltage electrolytic hydrogen production derived from efficient water and ethanol oxidation on fluorine-modified FeOOH anode. ACS Catal. 2018, 8, 526–530.

[82]

Chen, W.; Xie, C.; Wang, Y. Y.; Zou, Y. Q.; Dong, C. L.; Huang, Y. C.; Xiao, Z. H.; Wei, Z. X.; Du, S. Q.; Chen, C. et al. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation. Chem 2020, 6, 2974–2993.

[83]

Huang, H. L.; Yu, C.; Han, X. T.; Huang, H. W.; Wei, Q. B.; Guo, W.; Wang, Z.; Qiu, J. S. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA·cm−2. Energy Environ. Sci. 2020, 13, 4990–4999.

[84]

Zhao, Z. P.; Espinosa, M. M. F.; Zhou, J. H.; Xue, W.; Duan, X. F.; Miao, J. W.; Huang, Y. Synthesis of surface controlled nickel/palladium hydride nanodendrites with high performance in benzyl alcohol oxidation. Nano Res. 2019, 12, 1467–1472.

[85]

Wan, J.; Mu, X.; Jin, Y.; Zhu, J. K.; Xiong, Y. C.; Li, T. Y.; Li, R. Nitrogen-doped nickel-molybdenum oxide as a highly efficient electrocatalyst for benzyl alcohol oxidation. Green Chem. 2022, 24, 4870–4876.

[86]

You, B.; Liu, X.; Liu, X.; Sun, Y. J. Efficient H2 evolution coupled with oxidative refining of alcohols via a hierarchically porous nickel bifunctional electrocatalyst. ACS Catal. 2017, 7, 4564–4570.

[87]

Li, Z. H.; Yan, Y. F.; Xu, S. M.; Zhou, H.; Xu, M.; Ma, L. N.; Shao, M. F.; Kong, X. G.; Wang, B.; Zheng, L. R. et al. Alcohols electrooxidation coupled with H2 production at high current densities promoted by a cooperative catalyst. Nat. Commun. 2022, 13, 147.

[88]

González-Cobos, J.; Baranton, S.; Coutanceau, C. A systematic in situ infrared study of the electrooxidation of C3 alcohols on carbon-supported Pt and Pt-Bi catalysts. J. Phys. Chem. C 2016, 120, 7155–7164.

[89]

Dai, C. C.; Sun, L. B.; Liao, H. B.; Khezri, B.; Webster, R. D.; Fisher, A. C.; Xu, Z. J. Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles. J. Catal. 2017, 356, 14–21.

[90]

Garcia, A. C.; Birdja, Y. Y.; Tremiliosi-Filho, G.; Koper, M. T. M. Glycerol electro-oxidation on bismuth-modified platinum single crystals. J. Catal. 2017, 346, 117–124.

[91]

González-Cobos, J.; Baranton, S.; Coutanceau, C. Development of bismuth-modified PtPd nanocatalysts for the electrochemical reforming of polyols into hydrogen and value-added chemicals. ChemElectroChem 2016, 3, 1694–1704.

[92]

Zhou, C. H.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527–549.

[93]

Ma, G.; Yang, N.; Zhou, G. F.; Wang, X. The electrochemical reforming of glycerol at Pd nanocrystals modified ultrathin NiO nanoplates hybrids: An efficient system for glyceraldehyde and hydrogen coproduction. Nano Res. 2022, 15, 1934–1941.

[94]

Lam, C. H.; Bloomfield, A. J.; Anastas, P. T. A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst. Green Chem. 2017, 19, 1958–1968.

[95]

Zhou, B.; Li, Y. Y.; Zou, Y. Q.; Chen, W.; Zhou, W.; Song, M. L.; Wu, Y. J.; Lu, Y. X.; Liu, J. L.; Wang, Y. Y. et al. Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading. Angew. Chem., Int. Ed. 2021, 60, 22908–22914.

[96]

Yang, C. M.; Wang, C. T.; Zhou, L. H.; Duan, W.; Song, Y. Y.; Zhang, F. C.; Zhen, Y. Z.; Zhang, J. J.; Bao, W. W.; Lu, Y. X. et al. Refining d-band center in Ni0.85Se by Mo doping:A strategy for boosting hydrogen generation via coupling electrocatalytic oxidation 5-hydroxymethylfurfural. Chem. Eng. J. 2021, 422, 130125.

[97]

Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.

[98]

Cong, H. Y.; Yuan, H. B.; Tao, Z. K.; Bao, H. L.; Zhang, Z. M.; Jiang, Y.; Huang, D.; Liu, H. L.; Wang, T. F. Recent advances in catalytic conversion of biomass to 2,5-furandicarboxylic acid. Catalysts 2021, 11, 1113.

[99]

Kubota, S. R.; Choi, K. S. Electrochemical valorization of furfural to maleic acid. ACS Sustainable Chem. Eng. 2018, 6, 9596–9600.

[100]

Wang, T. H.; Huang, Z. F.; Liu, T. Y.; Tao, L.; Tian, J.; Gu, K. Z.; Wei, X. X.; Zhou, P.; Gan, L.; Du, S. Q. et al. Transforming electrocatalytic biomass upgrading and hydrogen production from electricity input to electricity output. Angew. Chem., Int. Ed. 2022, 61, e202115636.

[101]

Zhou, P.; Lv, X. S.; Tao, S. S.; Wu, J. C.; Wang, H. F.; Wei, X. X.; Wang, T. H.; Zhou, B.; Lu, Y. X.; Frauenheim, T. et al. Heterogeneous-interface-enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv. Mater. 2022, 34, 2204089.

[102]

You, B.; Jiang, N.; Liu, X.; Sun, Y. J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew. Chem., Int. Ed. 2016, 55, 9913–9917.

[103]

Gao, L. F.; Liu, Z. B.; Ma, J. L.; Zhong, L. J.; Song, Z. Q.; Xu, J. A.; Gan, S. Y.; Han, D. X.; Niu, L. NiSe@NiOx core–shell nanowires as a non-precious electrocatalyst for upgrading 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. Appl. Catal. B Environ. 2020, 261, 118235.

[104]

Taitt, B. J.; Nam, D. H.; Choi, K. S. A Comparative study of nickel, cobalt, and iron oxyhydroxide anodes for the electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. ACS Catal. 2019, 9, 660–670.

[105]

Heidary, N.; Chartrand, D.; Guiet, A.; Kornienko, N. Rational incorporation of defects within metal-organic frameworks generates highly active electrocatalytic sites. Chem. Sci. 2021, 12, 7324–7333.

[106]

Lu, X. Y.; Wu, K. H.; Zhang, B. S.; Chen, J. N.; Li, F.; Su, B. J.; Yan, P. Q.; Chen, J. M.; Qi, W. Highly Efficient electro-reforming of 5-hydroxymethylfurfural on vertically oriented nickel nanosheet/carbon hybrid catalysts: Structure–function relationships. Angew. Chem., Int. Ed. 2021, 60, 14528–14535.

[107]

Huang, X.; Song, J. L.; Hua, M. L.; Xie, Z. B.; Liu, S. S.; Wu, T. B.; Yang, G. Y.; Han, B. X. Enhancing the electrocatalytic activity of CoO for the oxidation of 5-hydroxymethylfurfural by introducing oxygen vacancies. Green Chem. 2020, 22, 843–849.

[108]

Jiang, N.; Liu, X.; Dong, J. M.; You, B.; Liu, X.; Sun, Y. J. Electrocatalysis of furfural oxidation coupled with H2 evolution via nickel-based electrocatalysts in water. ChemNanoMat 2017, 3, 491–495.

[109]

Chen, L. S.; Shi, J. L. Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER). J. Mater. Chem. A 2018, 6, 13538–13548.

[110]

Lin, C.; Zhang, P. J.; Wang, S. Y.; Zhou, Q. L.; Na, B.; Li, H. Q.; Tian, J. Y.; Zhang, Y.; Deng, C.; Meng, L. Q. et al. Engineered porous Co-Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment. J. Alloys Compd. 2020, 823, 153784.

[111]

Xu, X.; Ma, Z.; Li, D. Q.; Su, Z. K.; Dong, X. F.; Huang, H.; Qi, M. Pt concave nanocubes with high-index facets as electrocatalysts for glucose oxidation. ACS Appl. Nano Mater. 2022, 5, 4983–4990.

[112]

Gao, F.; Yang, Y. Z.; Qiu, W. W.; Song, Z. P.; Wang, Q. X.; Niu, L. Ni3C/Ni nanochains for electrochemical sensing of glucose. ACS Appl. Nano Mater. 2021, 4, 8520–8529.

[113]

Du, P. Y.; Zhang, J. J.; Liu, Y. H.; Huang, M. H. Hydrogen generation from catalytic glucose oxidation by Fe-based electrocatalysts. Electrochem. Commun. 2017, 83, 11–15.

[114]

Mello, G. A. B.; Cheuquepán, W.; Briega-Martos, V.; Feliu, J. M. Glucose electro-oxidation on Pt (100) in phosphate buffer solution (pH 7): A mechanistic study. Electrochim. Acta 2020, 354, 136765.

[115]

Liu, W. J.; Xu, Z. R.; Zhao, D. T.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

[116]

Zhang, Y. Q.; Zhou, B.; Wei, Z. X.; Zhou, W.; Wang, D. D.; Tian, J.; Wang, T. H.; Zhao, S. L.; Liu, J. L.; Tao, L. et al. Coupling glucose-assisted Cu(I)/Cu(II) redox with electrochemical hydrogen production. Adv. Mater. 2021, 33, 2104791.

[117]

Liu, R. Y.; Bae, M.; Buchwald, S. L. Mechanistic insight facilitates discovery of a mild and efficient copper-catalyzed dehydration of primary amides to nitriles using hydrosilanes. J. Am. Chem. Soc. 2018, 140, 1627–1631.

[118]

Wang, W. B.; Wang, Y. T.; Yang, R. O.; Wen, Q. L.; Liu, Y. W.; Jiang, Z.; Li, H. Q.; Zhai, T. Y. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C–N bonds to nitrile C≡N bonds. Angew. Chem., Int. Ed. 2020, 59, 16974–16981.

[119]

Ding, Y.; Miao, B. Q.; Li, S. N.; Jiang, Y. C.; Liu, Y. Y.; Yao, H. C.; Chen, Y. Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Appl. Catal. B Environ. 2020, 268, 118393.

[120]

Wang, Y.; Xue, Y. Y.; Yan, L. T.; Li, H. P.; Li, Y. P.; Yuan, E. H.; Li, M.; Li, S. N.; Zhai, Q. G. Multimetal incorporation into 2D conductive metal-organic framework nanowires enabling excellent electrocatalytic oxidation of benzylamine to benzonitrile. ACS Appl. Mater. Interfaces 2020, 12, 24786–24795.

[121]

Ma, F. H.; Wang, S. H.; Han, L. Y.; Guo, Y. H.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Zheng, Z. K. et al. Targeted regulation of the electronic states of nickel toward the efficient electrosynthesis of benzonitrile and hydrogen production. ACS Appl. Mater. Interfaces 2021, 13, 56140–56150.

[122]

Huang, Y.; Chong, X. D.; Liu, C. B.; Liang, Y.; Zhang, B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem., Int. Ed. 2018, 57, 13163–13166.

[123]

Mondal, I.; Hausmann, J. N.; Vijaykumar, G.; Mebs, S.; Dau, H.; Driess, M.; Menezes, P. W. Nanostructured intermetallic nickel silicide (pre)catalyst for anodic oxygen evolution reaction and selective dehydrogenation of primary amines. Adv. Energy Mater. 2022, 12, 2200269.

[124]

Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.

[125]

Zhang, W. J.; Hu, Y.; Ma, L. B.; Zhu, G. Y.; Wang, Y. R.; Xue, X. L.; Chen, R. P.; Yang, S. Y.; Jin, Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv. Sci. 2018, 5, 1700275.

[126]

Prslja, P.; López, N. Stability and redispersion of Ni nanoparticles supported on N-doped carbons for the CO2 electrochemical reduction. ACS Catal. 2021, 11, 88–94.

[127]

Wei, X. F.; Li, Y.; Chen, L. S.; Shi, J. L. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem., Int. Ed. 2021, 60, 3148–3155.

[128]

Choi, S.; Balamurugan, M.; Lee, K. G.; Cho, K. H.; Park, S.; Seo, H.; Nam, K. T. Mechanistic investigation of biomass oxidation using nickel oxide nanoparticles in a CO2-saturated electrolyte for paired electrolysis. J. Phys. Chem. Lett. 2020, 11, 2941–2948.

[129]

Zhao, L.; Kuang, X.; Chen, C.; Sun, X.; Wang, Z. L.; Wei, Q. Boosting electrocatalytic nitrogen fixation via energy-efficient anodic oxidation of sodium gluconate. Chem. Commun. 2019, 55, 10170–10173.

[130]

Wang, H.; Li, J. M.; Li, K.; Lin, Y. P.; Chen, J. M.; Gao, L. J.; Nicolosi, V.; Xiao, X.; Lee, J. M. Transition metal nitrides for electrochemical energy applications. Chem. Soc. Rev. 2021, 50, 1354–1390.

[131]

Wu, L. B.; Zhang, F. H.; Song, S. W.; Ning, M. H.; Zhu, Q.; Zhou, J. Q.; Gao, G. H.; Chen, Z. Y.; Zhou, Q. C.; Xing, X. X. et al. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation kinetics. Adv. Mater. 2022, 34, 2201774.

[132]

Bai, J.; Huang, H.; Li, F. M.; Zhao, Y.; Chen, P.; Jin, P. J.; Li, S. N.; Yao, H. C.; Zeng, J. H.; Chen, Y. Glycerol oxidation assisted electrocatalytic nitrogen reduction: Ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates. J. Mater. Chem. A 2019, 7, 21149–21156.

[133]

Xu, G. R.; Batmunkh, M.; Donne, S.; Jin, H. N.; Jiang, J. X.; Chen, Y.; Ma, T. Y. Ruthenium(III) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. J. Mater. Chem. A 2019, 7, 25433–25440.

[134]

Wang, Y. T.; Wang, C. H.; Li, M. Y.; Yu, Y. F.; Zhang, B. Nitrate electroreduction: Mechanism insight, in situ characterization, performance evaluation, and challenges. Chem. Soc. Rev. 2021, 50, 6720–6733.

[135]

Wang, Y. T.; Liu, C. B.; Zhang, B.; Yu, Y. F. Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. Sci. China Mater. 2020, 63, 2530–2538.

[136]

Chong, X. D.; Liu, C. B.; Wang, C. H.; Yang, R.; Zhang, B. Integrating hydrogen production and transfer hydrogenation with selenite promoted electrooxidation of α-nitrotoluenes to E-nitroethenes. Angew. Chem., Int. Ed. 2021, 60, 22010–22016.

[137]

Chadderdon, X. H.; Chadderdon, D. J.; Pfennig, T.; Shanks, B. H.; Li, W. Z. Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers. Green Chem. 2019, 21, 6210–6219.

[138]

Li, S. Q.; Sun, X.; Yao, Z. H.; Zhong, X.; Cao, Y. Y.; Liang, Y. L.; Wei, Z. Z.; Deng, S. W.; Zhuang, G. L.; Li, X. N. et al. Biomass valorization via paired electrosynthesis over vanadium nitride-based electrocatalysts. Adv. Funct. Mater. 2019, 29, 1904780.

[139]

Zhang, P. L.; Sheng, X.; Chen, X. Y.; Fang, Z. Y.; Jiang, J.; Wang, M.; Li, F. S.; Fan, L. Z.; Ren, Y. S.; Zhang, B. B. et al. Paired electrocatalytic oxygenation and hydrogenation of organic substrates with water as the oxygen and hydrogen source. Angew. Chem., Int. Ed. 2019, 58, 9155–9159.

[140]

Wu, R. Z.; Meng, Q. L.; Yan, J.; Liu, H. Z.; Zhu, Q. G.; Zheng, L. R.; Zhang, J.; Han, B. X. Electrochemical strategy for the simultaneous production of cyclohexanone and benzoquinone by the reaction of phenol and water. J. Am. Chem. Soc. 2022, 144, 1556–1571.

[141]

Li, M. Y.; Liu, C. B.; Huang, Y.; Han, S. Y.; Zhang, B. Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode. Chin. J. Catal. 2021, 42, 1983–1991.

[142]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Tian, C. G.; Wu, A. P.; Wang, Y.; Fu, H. G. Unraveling the mechanism for paired electrocatalysis of organics with water as a feedstock. Nat. Commun. 2022, 13, 3125.

[143]
Wu, Z. Y.; Chen, F. Y.; Li, B. Y.; Yu, S. W.; Finfrock, Y. Z.; Meira, D. M.; Yan, Q. Q.; Zhu, P.; Chen, M. X.; Song, T. W. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater., in press, https://doi.org/10.1038/s41563-022-01380-5.
DOI
[144]

Sha, L. N.; Yin, J. L.; Ye, K.; Wang, G.; Zhu, K.; Cheng, K.; Yan, J.; Wang, G. L.; Cao, D. X. The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. J. Mater. Chem. A 2019, 7, 9078–9085.

[145]

Liu, D. N.; Liu, T. T.; Zhang, L. X.; Qu, F. L.; Du, G.; Asiri, A. M.; Sun, X. P. High-performance urea electrolysis towards less energy-intensive electrochemical hydrogen production using a bifunctional catalyst electrode. J. Mater. Chem. A 2017, 5, 3208–3213.

[146]

Hao, P.; Zhu, W. Q.; Li, L. Y.; Tian, J.; Xie, J. F.; Lei, F. C.; Cui, G. W.; Zhang, Y. Q.; Tang, B. Nickel incorporated Co9S8 nanosheet arrays on carbon cloth boosting overall urea electrolysis. Electrochim. Acta 2020, 338, 135883.

[147]

Li, J. L.; Yao, C. X.; Kong, X. G.; Li, Z. H.; Jiang, M. H.; Zhang, F. Z.; Lei, X. D. Boosting hydrogen production by electrooxidation of urea over 3D hierarchical Ni4N/Cu3N nanotube arrays. ACS Sustainable Chem. Eng. 2019, 7, 13278–13285.

[148]

Hu, S. N.; Feng, C. Q.; Wang, S. Q.; Liu, J. W.; Wu, H. M.; Zhang, L.; Zhang, J. J. Ni3N/NF as bifunctional catalysts for both hydrogen generation and urea decomposition. ACS Appl. Mater. Interfaces 2019, 11, 13168–13175.

[149]

Li, F.; Chen, J. X.; Zhang, D. F.; Fu, W. F.; Chen, Y.; Wen, Z. H.; Lv, X. J. Heteroporous MoS2/Ni3S2 towards superior electrocatalytic overall urea splitting. Chem. Commun. 2018, 54, 5181–5184.

[150]

Xu, H. Z.; Ye, K.; Zhu, K.; Gao, Y. Y.; Yin, J. L.; Yan, J.; Wang, G. L.; Cao, D. X. Transforming carnation-shaped MOF-Ni to Ni-Fe prussian blue analogue derived efficient bifunctional electrocatalyst for urea electrolysis. ACS Sustainable Chem. Eng. 2020, 8, 16037–16045.

[151]

Wen, X. Z. NiFe-LDH/MWCNTs/NF nanohybrids as a high-performance bifunctional electrocatalyst for overall urea electrolysis. Int. J. Hydrogen Energy 2020, 45, 14660–14668.

[152]

Jiang, H.; Sun, M. Z.; Wu, S. L.; Huang, B. L.; Lee, C. S.; Zhang, W. J. Oxygen-incorporated NiMoP nanotube arrays as efficient bifunctional electrocatalysts for urea-assisted energy-saving hydrogen production in alkaline electrolyte. Adv. Funct. Mater. 2021, 31, 2104951.

[153]

Yang, M.; Jiang, Y. M.; Qu, M. J.; Qin, Y. C.; Wang, Y.; Shen, W.; He, R. X.; Su, W.; Li, M. Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Appl. Catal. B:Environ. 2020, 269, 118803.

[154]

Shen, F.; Jiang, W. J.; Qian, G. F.; Chen, W.; Zhang, H.; Luo, L.; Yin, S. B. Strongly coupled carbon encapsulated Ni-WO2 hybrids as efficient catalysts for water-to-hydrogen conversion via urea electro-oxidation. J. Power Sources 2020, 458, 228014.

[155]

Zhu, W. X.; Yue, Z. H.; Zhang, W. T.; Hu, N.; Luo, Z. T.; Ren, M. R.; Xu, Z. J.; Wei, Z. Y.; Suo, Y. R.; Wang, J. L. Wet-chemistry topotactic synthesis of bimetallic iron-nickel sulfide nanoarrays: An advanced and versatile catalyst for energy efficient overall water and urea electrolysis. J. Mater. Chem. A 2018, 6, 4346–4353.

[156]

Wang, C.; Lu, H. L.; Mao, Z. Y.; Yan, C. L.; Shen, G. Z.; Wang, X. F. Bimetal schottkyheterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000556.

[157]

Zhang, W. X.; Jia, Q.; Liang, H.; Cui, L.; Wei, D.; Liu, J. Q. Iron doped Ni3S2nanorods directly grown on FeNi3 foam as an efficient bifunctional catalyst for overall water splitting. Chem. Eng. J. 2020, 396, 125315.

[158]

Wang, T.; Wu, H. M.; Feng, C. Q.; Zhang, L.; Zhang, J. J. MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea-water electrolysis. J. Mater. Chem. A 2020, 8, 18106–18116.

[159]

Xu, H. Z.; Ye, K.; Zhu, K.; Gao, Y. Y.; Yin, J. L.; Yan, J.; Wang, G. L.; Cao, D. X. Hollow bimetallic selenide derived from a hierarchical MOF-based Prussian blue analogue for urea electrolysis. Inorg. Chem. Front. 2021, 8, 2788–2797.

[160]

Sun, Q. Q.; Zhou, M.; Shen, Y. Q.; Wang, L. Y.; Ma, Y.; Li, Y. B.; Bo, X.; Wang, Z. L.; Zhao, C. Hierarchical nanoporous Ni(Cu) alloy anchored on amorphous NiFeP as efficient bifunctional electrocatalysts for hydrogen evolution and hydrazine oxidation. J. Catal. 2019, 373, 180–189.

[161]

Sun, Q. Q.; Li, Y. B.; Wang, J. F.; Cao, B. Y.; Yu, Y.; Zhou, C. S.; Zhang, G. C.; Wang, Z. L.; Zhao, C. Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high-efficiency overall hydrazine splitting. J. Mater. Chem. A 2020, 8, 21084–21093.

[162]

Wang, Z. Y.; Xu, L.; Huang, F. Z.; Qu, L. B.; Li, J. T.; Owusu, K. A.; Liu, Z. A.; Lin, Z. F.; Xiang, B. H.; Liu, X. et al. Copper-nickel nitride nanosheets as efficient bifunctional catalysts for hydrazine-assisted electrolytic hydrogen production. Adv. Energy Mater. 2019, 9, 1900390.

[163]

Gao, Y.; Wang, Q.; He, T.; Zhang, J. Y.; Sun, H.; Zhao, B.; Xia, B. Y.; Yan, Y.; Chen, Y. Defective crystalline molybdenum phosphides as bifunctional catalysts for hydrogen evolution and hydrazine oxidation reactions during water splitting. Inorg. Chem. Front. 2019, 6, 2686–2695.

[164]

Li, Y.; Zhao, Y.; Li, F. M.; Dang, Z. Y.; Gao, P. Q. Ultrathin NiSenanosheets on Ni foam for efficient and durable hydrazine-assisted electrolytic hydrogen production. ACS Appl. Mater. Interfaces 2021, 13, 34457–34467.

[165]

Tang, X. L.; Zhang, J. Y.; Mei, B. B.; Zhang, X. M.; Liu, Y. P.; Wang, J. X.; Li, W. Synthesis of hollow CoSe2/MoSe2nanospheres for efficient hydrazine-assisted hydrogen evolution. Chem. Eng. J. 2021, 404, 126529.

[166]

Li, Y. P.; Li, J. M.; Qian, Q. Z.; Jin, X.; Liu, Y.; Li, Z. Y.; Zhu, Y.; Guo, Y. M.; Zhang, G. Q. SuperhydrophilicNi-based multicomponent nanorod-confined-nanoflake array electrode achieves waste-battery-driven hydrogen evolution and hydrazine oxidation. Small 2021, 17, 2008148.

[167]

Liu, X. J.; He, J.; Zhao, S. Z.; Liu, Y. P.; Zhao, Z.; Luo, J.; Hu, G. Z.; Sun, X. M.; Ding, Y. Self-powered H2 production with bifunctional hydrazine as sole consumable. Nat. Commun. 2018, 9, 4365.

[168]

Liu, Y.; Zhang, J. H.; Li, Y. P.; Qian, Q. Z.; Li, Z. Y.; Zhu, Y.; Zhang, G. Q. Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nat. Commun. 2020, 11, 1853.

[169]

Zhang, J. H.; Liu, Y.; Li, J. M.; Jin, X.; Li, Y. P.; Qian, Q. Z.; Wang, Y. X.; El-Harairy, A.; Li, Z. Y.; Zhu, Y. et al. Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydrazine oxidation. ACS Appl. Mater. Interfaces 2021, 13, 3881–3890.

[170]

Qian, Q. Z.; Zhang, J. H.; Li, J. M.; Li, Y. P.; Jin, X.; Zhu, Y.; Liu, Y.; Li, Z. Y.; El-Harairy, A.; Xiao, C. et al. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew. Chem., Int. Ed. 2021, 60, 5984–5993.

[171]

Feng, Z. B.; Zhang, H.; Wang, L.; Gao, B.; Lu, P.; Xing, P. F. Nanoporous nickel-selenide as high-active bifunctional electrocatalyst for oxygen evolution and hydrazine oxidation. J. Electroanal. Chem. 2020, 876, 114740.

[172]

Feng, Z. B.; Wang, E. P.; Huang, S.; Liu, J. M. A bifunctional nanoporous Ni-Co-Se electrocatalyst with a superaerophobic surface for water and hydrazine oxidation. Nanoscale 2020, 12, 4426–4434.

[173]

Feng, Z. B.; Gao, B.; Wang, L.; Zhang, H.; Lu, P.; Xing, P. F. Nanoporous cobalt-selenide as high-performance bifunctional electrocatalyst towards oxygen evolution and hydrazine oxidation. J. Electrochem. Soc. 2020, 167, 134501.

[174]

Liu, Y.; Zhang, J. H.; Li, Y. P.; Qian, Q. Z.; Li, Z. Y.; Zhang, G. Q. Realizing the synergy of interface engineering and chemical substitution for Ni3N enables its bifunctionality toward hydrazine oxidation assisted energy-saving hydrogen production. Adv. Funct. Mater. 2021, 31, 2103673.

[175]

Li, J. C.; Li, Y.; Wang, J. A.; Zhang, C.; Ma, H. J.; Zhu, C. H.; Fan, D. D.; Guo, Z. Q.; Xu, M.; Wang, Y. Y. et al. Elucidating the critical role of ruthenium single atom sites in water dissociation and dehydrogenation behaviors for robust hydrazine oxidation-boosted alkaline hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2109439.

[176]

Sun, F.; Qin, J. S.; Wang, Z. Y.; Yu, M. Z.; Wu, X. H.; Sun, X. M.; Qiu, J. S. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nat. Commun. 2021, 12, 4182.

[177]

Wang, W. B.; Zhu, Y. B.; Wen, Q. L.; Wang, Y. T.; Xia, J.; Li, C. C.; Chen, M. W.; Liu, Y. W.; Li, H. Q.; Wu, H. A. et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv. Mater. 2019, 31, 1900528.

[178]

Kang, M. J.; Park, H.; Jegal, J.; Hwang, S. Y.; Kang, Y. S.; Cha, H. G. Electrocatalysis of 5-hydroxymethylfurfural at cobalt based spinel catalysts with filamentous nanoarchitecture in alkaline media. Appl. Catal. B:Environ. 2019, 242, 85–91.

[179]

Zhang, J. W.; Yu, P. L.; Zeng, G. M.; Bao, F. X.; Yuan, Y. L.; Huang, H. W. Boosting HMF oxidation performance via decorating ultrathin nickel hydroxide nanosheets with amorphous copper hydroxide islands. J. Mater. Chem. A 2021, 9, 9685–9691.

[180]

Zhang, N. N.; Zou, Y. Q.; Tao, L.; Chen, W.; Zhou, L.; Liu, Z. J.; Zhou, B.; Huang, G.; Lin, H. Z.; Wang, S. Y. Electrochemical oxidation of 5-hydroxymethylfurfural on nickel nitride/carbon nanosheets: Reaction pathway determined by in situ sum frequency generation vibrational spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 15895–15903.

[181]

Liu, W. J.; Dang, L. N.; Xu, Z. R.; Yu, H. Q.; Jin, S.; Huber, G. W. Electrochemical oxidation of 5-hydroxymethylfurfural with NiFe layered double hydroxide (LDH) nanosheet catalysts. ACS Catal. 2018, 8, 5533–5541.

[182]

Xie, Y. A.; Zhou, Z. Y.; Yang, N. J.; Zhao, G. H. An overall reaction integrated with highly selective oxidation of 5-hydroxymethylfurfural and efficient hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2102886.

[183]

Wang, C. L.; Bongard, H. J.; Yu, M. Q.; Schüth, F. Highly ordered mesoporous Co3O4electrocatalyst for efficient, selective, and stable oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. ChemSusChem 2021, 14, 5199–5206.

[184]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

[185]

Zhou, Z. Q.; Chen, C. L.; Gao, M. R.; Xia, B. W.; Zhang, J. In situ anchoring of a Co3O4 nanowire on nickel foam: An outstanding bifunctional catalyst for energy-saving simultaneous reactions. Green Chem. 2019, 21, 6699–6706.

[186]

Deng, X. H.; Kang, X. M.; Li, M.; Xiang, K.; Wang, C.; Guo, Z. P.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Coupling efficient biomass upgrading with H2 production via bifunctionalCuxS@NiCo-LDH core–shell nanoarrayelectrocatalysts. J. Mater. Chem. A 2020, 8, 1138–1146.

[187]

Jiang, N.; You, B.; Boonstra, R.; Rodriguez, I. M. T.; Sun, Y. J. Integrating electrocatalytic 5-hydroxymethylfurfural oxidation and hydrogen production via Co-P-derived electrocatalysts. ACS Energy Lett. 2016, 1, 386–390.

[188]

Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.

[189]

Deng, X. H.; Li, M.; Fan, Y.; Wang, L.; Fu, X. Z.; Luo, J. L. Constructing multifunctional “nanoplatelet-on-nanoarray” electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production. Appl. Catal. B:Environ. 2020, 278, 119339.

[190]

Wang, L.; Cao, J. H.; Lei, C. J.; Dai, Q.; Yang, B.; Li, Z. J.; Zhang, X. W.; Yuan, C.; Lei, L. C.; Hou, Y. Strongly coupled 3D N-doped MoO2/Ni3S2hybrid for high current density hydrogen evolution electrocatalysis and biomass upgrading. ACS Appl. Mater. Interfaces 2019, 11, 27743–27750.

[191]

Song, X. J.; Liu, X. H.; Wang, H. F.; Guo, Y.; Wang, Y. Q. Improved performance of nickel boride by phosphorus doping as an efficient electrocatalyst for the oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid. Ind. Eng. Chem. Res. 2020, 59, 17348–17356.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 October 2022
Revised: 27 November 2022
Accepted: 18 December 2022
Published: 28 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. U20A20250, 22171074, 91961111, and 21901064), the Heilongjiang Provincial Natural Science Foundation of China (No. YQ2021B009), the Reform and Development Fund Project of Local University supported by the Central Government (Outstanding Youth Program), and the Basic Research Fund of Heilongjiang University in Heilongjiang Province (No. 2021-KYYWF-0031).

Return