AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products

Zongnan Wei1,2Shuai Yue1,2Shuiying Gao2,3Minna Cao2,3( )Rong Cao2,3,4( )
Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
University of Chinese Academy of Sciences, Beijing 100049, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
Show Author Information

Graphical Abstract

Cu99.3Au0.7 nanowires (NWs) exhibited superior performance in electrocatalytic CO2 reduction reaction (CO2RR) toward multicarbon (C2+) products than Cu96.7Au3.3 and Cu NWs. The enhancement could be attributed to the charge transfer and CO spillover between Cu and Au sites.

Abstract

As efficient catalysts of electrochemical CO2 reduction reaction (CO2RR) towards multicarbon (C2+) products, Cu-based catalysts have faced the challenges of increasing the reactive activity and selectivity. Herein, we decorated the surface of Cu nanowires (Cu NWs) with a small amount of Au nanoparticles (Au NPs) by the homo-nucleation method. When the Au to Cu mass ratio is as little as 0.7 to 99.3, the gold-doped copper nanowires (Cu-Au NWs) could effectively improve the selectivity and activity of CO2RR to C2+ resultants, with the Faradaic efficiency (FE) from 39.7% (Cu NWs) to 65.3%, and the partial current density from 7.0 (Cu NWs) to 12.1 mA/cm2 under −1.25 V vs. reversible hydrogen electrode (RHE). The enhanced electrocatalytic performance could be attributed to the following three synergetic factors. The addition of Au nanoparticles caused a rougher surface of the catalyst, which allowed for more active sites exposed. Besides, Au sites generated *CO intermediates spilling over into Cu sites with the calculated efficiency of 87.2%, which are necessary for multicarbon production. Meanwhile, the interphase electron transferred from Cu to Au induced the electron-deficient Cu, which favored the adsorption of *CO to further generate multicarbon productions. Our results uncovered the morphology, tandem, and electronic effect between Cu NWs and Au NPs facilitated the activity and selectivity of CO2RR to multicarbons.

Electronic Supplementary Material

Download File(s)
12274_2023_5430_MOESM1_ESM.pdf (2.7 MB)

References

[1]

Li, Z.; Wu, R.; Zhao, L.; Li, P. B.; Wei, X. X.; Wang, J. J.; Chen, J. S.; Zhang, T. R. Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: Recent advances and future perspectives. Nano Res. 2021, 14, 3795–3809.

[2]

Cai, Z.; Zhang, Y. S.; Zhao, Y. X.; Wu, Y. S.; Xu, W. W.; Wen, X. M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H. L. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345–349.

[3]

Hou, Y.; Huang, Y. B.; Liang, Y. L.; Chai, G. L.; Yi, J. D.; Zhang, T.; Zang, K. T.; Luo, J.; Xu, R.; Lin, H. et al. Unraveling the reactivity and selectivity of atomically isolated metal-nitrogen sites anchored on porphyrinic triazine frameworks for electroreduction of CO2. CCS Chem. 2019, 1, 384–395.

[4]

Xia, D.; Yu, H. Y.; Xie, H.; Huang, P.; Menzel, R.; Titirici, M. M.; Chai, G. Recent progress of Bi-based electrocatalysts for electrocatalytic CO2 reduction. Nanoscale 2022, 14, 7957–7973.

[5]

Xiong, L. K.; Zhang, X.; Yuan, H.; Wang, J.; Yuan, X. Z.; Lian, Y. B.; Jin, H. D.; Sun, H.; Deng, Z.; Wang, D. et al. Breaking the linear scaling relationship by compositional and structural crafting of ternary Cu-Au/Ag nanoframes for electrocatalytic ethylene production. Angew. Chem., Int. Ed. 2021, 60, 2508–2518.

[6]

Zhang, T. Y.; Bui, J. C.; Li, Z. Y.; Bell, A. T.; Weber, A. Z.; Wu, J. J. Highly selective and productive reduction of carbon dioxide to multicarbon products via in situ CO management using segmented tandem electrodes. Nat. Catal. 2022, 5, 202–211.

[7]

Xu, H. P.; Rebollar, D.; He, H. Y.; Chong, L. N.; Liu, Y. Z.; Liu, C.; Sun, C. J.; Li, T.; Muntean, J. V.; Winans, R. E. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 2020, 5, 623–632.

[8]

Li, Y. C.; Wang, Z. Y.; Yuan, T. G.; Nam, D. H.; Luo, M. C.; Wicks, J.; Chen, B.; Li, J.; Li, F. W.; de Arquer, F. P. G. et al. Binding site diversity promotes CO2 electroreduction to ethanol. J. Am. Chem. Soc. 2019, 141, 8584–8591.

[9]

Peng, C.; Luo, G.; Zhang, J. B.; Chen, M. H.; Wang, Z. Q.; Sham, T. K.; Zhang, L. J.; Li, Y. F.; Zheng, G. F. Double sulfur vacancies by lithium tuning enhance CO2 electroreduction to n-propanol. Nat. Commun. 2021, 12, 1580.

[10]

Wu, G. L.; Song, Y. R.; Zheng, Q.; Long, C.; Fan, T.; Yang, Z. J.; Huang, X. W.; Li, Q.; Sun, Y. L.; Zuo, L. L. et al. Selective electroreduction of CO2 to n-propanol in two-step tandem catalytic system. Adv. Energy Mater. 2022, 12, 2202054.

[11]

Tomboc, G. M.; Choi, S.; Kwon, T.; Hwang, Y. J.; Lee, K. Potential link between Cu surface and selective CO2 electroreduction: Perspective on future electrocatalyst designs. Adv. Mater. 2020, 32, 1908398.

[12]

Popović, S.; Smiljanić, M.; Jovanović, P.; Vavra, J.; Buonsanti, R.; Hodnik, N. Stability and degradation mechanisms of copper-based catalysts for electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 14736–14746.

[13]

Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

[14]

Chen, Z.; Song, Y.; Zhang, Z. Y.; Cai, Y. F.; Liu, H.; Xie, W. X.; Deng, D. H. Mechanically induced Cu active sites for selective C–C coupling in CO2 electroreduction. J. Energy Chem. 2022, 74, 198–202.

[15]

Liu, D. D.; Zhang, Z. Y.; Feng, J. J.; Yu, Z.; Meng, F. N.; Xu, G. H.; Wang, J. M.; Wen, W.; Liu W. Atomic-level flatness on oxygen-free copper surface in lapping and chemical mechanical polishing. Nanoscale Adv. 2022, 4, 4263–4271.

[16]

Zhang, Z. Y.; Cui, J. F.; Zhang, J. B.; Liu, D. D.; Yu, Z. J.; Guo, D. M. Environment friendly chemical mechanical polishing of copper. Appl. Surf. Sci. 2019, 467–468, 5–11.

[17]

Wu, Z. Z.; Zhang, X. L.; Niu, Z. Z.; Gao, F. Y.; Yang, P. P.; Chi, L. P.; Shi, L.; Wei, W. S.; Liu, R.; Chen, Z. et al. Identification of Cu (100)/Cu (111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 2022, 144, 259–269.

[18]

Chang, C. J.; Lin, S. C.; Chen, H. C.; Wang, J. L.; Zheng, K. J.; Zhu, Y. P.; Chen, H. M. Dynamic reoxidation/reduction-driven atomic interdiffusion for highly selective CO2 reduction toward methane. J. Am. Chem. Soc. 2020, 142, 12119–12132.

[19]

Zhang, L. G.; Li, N.; Gao, F. M.; Hou, L.; Xu, Z. M. Insulin amyloid fibrils: An excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 11326–11329.

[20]

Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

[21]

Fu, J. J.; Zhu, W. L.; Chen, Y.; Yin, Z. Y.; Li, Y. Y.; Liu, J.; Zhang, H. Y.; Zhu, J. J.; Sun, S. H. Bipyridine-assisted assembly of Au nanoparticles on Cu nanowires to enhance the electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 14100–14103.

[22]

Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

[23]

Choi, C.; Cai, J.; Lee, C.; Lee, H. M.; Xu, M. J.; Huang, Y. Intimate atomic Cu-Ag interfaces for high CO2RR selectivity towards CH4 at low over potential. Nano Res. 2021, 14, 3497–3501.

[24]

Zhong, Y. Z.; Kong, X. D.; Song, Z. M.; Liu, Y.; Peng, L. P.; Zhang, L.; Luo, X.; Zeng, J.; Geng, Z. G. Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C–C coupling toward CO2 eletroreduction. Nano Lett. 2022, 22, 2554–2560.

[25]

Lv, H.; Lv, F.; Qin, H. Y.; Min, X. W.; Sun, L. Z.; Han, N.; Xu, D. D.; Li, Y. G.; Liu, B. Single-crystalline mesoporous palladium and palladium-copper nanocubes for highly efficient electrochemical CO2 reduction. CCS Chem. 2022, 4, 1376–1385.

[26]

Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.

[27]

Huang, J. F.; Mensi, M.; Oveisi, E.; Mantella, V.; Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag-Cu nanodimers. J. Am. Chem. Soc. 2019, 141, 2490–2499.

[28]

Zhu, W. L.; Zhang, Y. J.; Zhang, H. Y.; Lv, H. F.; Li, Q.; Michalsky, R.; Peterson, A. A.; Sun, S. H. Active and selective conversion of CO2 to CO on ultrathin Au nanowires. J. Am. Chem. Soc. 2014, 136, 16132–16135.

[29]
Wang, H. M.; Fu, Y. Q.; Chen, Z. N.; Zhuang, W.; Cao, M. N.; Cao, R. Tunable CO2 enrichment on functionalized Au surface for enhanced CO2 electroreduction. Nano Res., in press, https://doi.org/10.1007/s12274-022-5159-8.
[30]

Zangmeister, C. D.; Picraux, L. B.; Van Zee, R. D.; Yao, Y. X.; Tour, J. M. Energy-level alignment and work function shifts for thiol-bound monolayers of conjugated molecules self-assembled on Ag, Cu, Au, and Pt. Chem. Phys. Lett. 2007, 442, 390–393.

[31]

Wang, X.; Ou, P. F.; Wicks, J.; Xie, Y.; Wang, Y.; Li, J.; Tam, J.; Ren, D.; Howe, J. Y.; Wang, Z. Y. et al. Gold-in-copper at low *CO coverage enables efficient electromethanation of CO2. Nat. Commun. 2021, 12, 3387.

[32]

Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 2014, 5, 4948.

[33]

Kim, D.; Xie, C. L.; Becknell, N.; Yu, Y.; Karamad, M.; Chan, K.; Crumlin, E. J.; Nørskov, J. K.; Yang, P. D. Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J. Am. Chem. Soc. 2017, 139, 8329–8336.

[34]

Dai, S.; Huang, T. H.; Liu, W. I.; Hsu, C. W.; Lee, S. W.; Chen, T. Y.; Wang, Y. C.; Wang, J. H.; Wang, K. W. Enhanced CO2 electrochemical reduction performance over Cu@AuCu catalysts at high noble metal utilization efficiency. Nano Lett. 2021, 21, 9293–9300.

[35]

Stewart, I. E.; Ye, S. R.; Chen, Z. F.; Flowers, P. F.; Wiley, B. J. Synthesis of Cu-Ag, Cu-Au, and Cu-Pt core–shell nanowires and their use in transparent conducting films. Chem. Mater. 2015, 27, 7788–7794.

[36]

Luo, M.; Zhou, M.; Da Silva, R. R.; Tao, J.; Figueroa-Cosme, L.; Gilroy, K. D.; Peng, H. C.; He, Z. K.; Xia, Y. N. Pentatwinned Cu nanowires with ultrathin diameters below 20 nm and their use as templates for the synthesis of Au-based nanotubes. ChemNanoMat 2017, 3, 190–195.

[37]

Jin, M. S.; He, G. N.; Zhang, H.; Zeng, J.; Xie, Z. X.; Xia, Y. N. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent. Angew. Chem., Int. Ed. 2011, 50, 10560–10564.

[38]

Zhang, W.; Huang, C. Q.; Xiao, Q.; Yu, L.; Shuai, L.; An, P. F.; Zhang, J.; Qiu, M.; Ren, Z. F.; Yu, Y. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2020, 142, 11417–11427.

[39]

Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.

[40]

Jia, H. L.; Yang, Y. Y.; Chow, T. H.; Zhang, H.; Liu, X. Y.; Wang, J. F.; Zhang, C. Y. Symmetry-broken Au-Cu heterostructures and their tandem catalysis process in electrochemical CO2 reduction. Adv. Funct. Mater. 2021, 31, 2101255.

[41]

Yang, R. O.; Duan, J. Y.; Dong, P. P.; Wen, Q. L.; Wu, M.; Liu, Y. W.; Liu, Y.; Li, H. Q.; Zhai, T. Y. In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew. Chem., Int. Ed. 2022, 61, e202116706.

[42]

Gao, J.; Zhang, H.; Guo, X. Y.; Luo, J. S.; Zakeeruddin, S. M.; Ren, D.; Grätzel, M. Selective C–C coupling in carbon dioxide electroreduction via efficient spillover of intermediates as supported by operando Raman spectroscopy. J. Am. Chem. Soc. 2019, 141, 18704–18714.

[43]

Guo, C. Y.; Guo, Y. H.; Shi, Y. M.; Lan, X. N.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cuδ+ species. Angew. Chem., Int. Ed. 2022, 61, e202205909.

[44]

Zhu, S. Q.; Jiang, B.; Cai, W. B.; Shao, M. H. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 2017, 139, 15664–15667.

[45]

Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2017, 139, 47–50.

[46]

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

Nano Research
Pages 7777-7783
Cite this article:
Wei Z, Yue S, Gao S, et al. Synergetic effects of gold-doped copper nanowires with low Au content for enhanced electrocatalytic CO2 reduction to multicarbon products. Nano Research, 2023, 16(5): 7777-7783. https://doi.org/10.1007/s12274-023-5430-z
Topics:

5614

Views

23

Crossref

1

Web of Science

19

Scopus

1

CSCD

Altmetrics

Received: 17 October 2022
Revised: 06 December 2022
Accepted: 21 December 2022
Published: 18 February 2023
© Tsinghua University Press 2023
Return