Journal Home > Volume 16 , Issue 3

Tattoo electronics has attracted intensive interest in recent years due to its comfortable wearing and imperceivable sensing, and has been broadly applied in wearable healthcare and human–machine interface. However, the tattoo electrodes are mostly composed of metal films and conductive polymers. Two-dimensional (2D) materials, which are superior in conductivity and stability, are barely studied for electronic tattoos. Herein, we reported a novel electronic tattoo based on large-area Mo2C film grown by chemical vapor deposition (CVD), and applied it to accurately and imperceivably acquire on-body electrophysiological signals and interface with robotics. High-quality Mo2C film was obtained via optimizing the distribution of gas flow during CVD growth. According to the finite element simulation (FES), bottom surface of Cu foil covers more stable gas flow than the top surface, thus leading to more uniform Mo2C film. The resulting Mo2C film was transferred onto tattoo paper, showing a total thickness of ~ 3 μm, sheet resistance of 60–150 Ω/sq, and skin-electrode impedance of ~ 5 × 105 Ω. Such thin Mo2C electronic tattoo (MCET in short) can form conformal contact with skin and accurately record electrophysiological signals, including electromyography (EMG), electrocardiogram (ECG), and electrooculogram (EOG). These body signals collected by MCET can not only reflect the health status but also be transformed to control the robotics for human–machine interface.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electronic tattoos based on large-area Mo2C grown by chemical vapor deposition for electrophysiology

Show Author's information Shiyu Wang1Xin Wang1Weifeng Zhang1Xiaohu Shi1Dekui Song1Yan Zhang1Yan Zhao1Zihan Zhao1Nan Liu1,2( )
Beijing Graphene Institute, Beijing 100094, China
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China

Abstract

Tattoo electronics has attracted intensive interest in recent years due to its comfortable wearing and imperceivable sensing, and has been broadly applied in wearable healthcare and human–machine interface. However, the tattoo electrodes are mostly composed of metal films and conductive polymers. Two-dimensional (2D) materials, which are superior in conductivity and stability, are barely studied for electronic tattoos. Herein, we reported a novel electronic tattoo based on large-area Mo2C film grown by chemical vapor deposition (CVD), and applied it to accurately and imperceivably acquire on-body electrophysiological signals and interface with robotics. High-quality Mo2C film was obtained via optimizing the distribution of gas flow during CVD growth. According to the finite element simulation (FES), bottom surface of Cu foil covers more stable gas flow than the top surface, thus leading to more uniform Mo2C film. The resulting Mo2C film was transferred onto tattoo paper, showing a total thickness of ~ 3 μm, sheet resistance of 60–150 Ω/sq, and skin-electrode impedance of ~ 5 × 105 Ω. Such thin Mo2C electronic tattoo (MCET in short) can form conformal contact with skin and accurately record electrophysiological signals, including electromyography (EMG), electrocardiogram (ECG), and electrooculogram (EOG). These body signals collected by MCET can not only reflect the health status but also be transformed to control the robotics for human–machine interface.

Keywords: chemical vapor deposition, gas flow, electronic tattoo, electrophysiological signals, Mo2C film

References(47)

[1]

Chen, J. W.; Zhu, Y. T.; Chang, X. H.; Pan, D.; Song, G.; Guo, Z. H.; Naik, N. Recent progress in essential functions of soft electronic skin. Adv. Funct. Mater. 2021, 31, 2104686.

[2]

Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. N. 25th anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6038.

[3]

Ling, Y. Z.; An, T. C.; Yap, L. W.; Zhu, B. W.; Gong, S.; Cheng, W. L. Disruptive, soft, wearable sensors. Adv. Mater. 2020, 32, e1904664.

[4]

Lyu, Q. X.; Gong, S.; Yin, J. L.; Dyson, J. M.; Cheng, W. L. Soft wearable healthcare materials and devices. Adv. Healthc. Mater. 2021, 10, 2100577.

[5]

Wang, X. W.; Liu, Z.; Zhang, T. Flexible sensing electronics for wearable/attachable health monitoring. Small 2017, 13, 1602790.

[6]

Wu, H.; Yang, G. G.; Zhu, K. H.; Liu, S. Y.; Guo, W.; Jiang, Z.; Li, Z. Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human–machine interfaces. Adv. Sci. (Weinh.) 2021, 8, 2001938.

[7]

Bandodkar, A. J.; Jia, W. Z.; Wang, J. Tattoo-based wearable electrochemical devices: A review. Electroanalysis 2015, 27, 562–572.

[8]

Ferrari, L. M.; Sudha, S.; Tarantino, S.; Esposti, R.; Bolzoni, F.; Cavallari, P.; Cipriani, C.; Mattoli, V.; Greco, F. Ultraconformable temporary tattoo electrodes for electrophysiology. Adv. Sci. (Weinh.) 2018, 5, 1700771.

[9]

Gogurla, N.; Kim, Y.; Cho, S.; Kim, J.; Kim, S. Multifunctional and ultrathin electronic tattoo for on-skin diagnostic and therapeutic applications. Adv. Mater. 2021, 33, 2008308.

[10]

Wang, Q.; Ling, S. J.; Liang, X. P.; Wang, H. M.; Lu, H. J.; Zhang, Y. Y. Self-healable multifunctional electronic tattoos based on silk and graphene. Adv. Funct. Mater. 2019, 29, 1808695.

[11]

Huigen, E.; Peper, A.; Grimbergen, C. A. Investigation into the origin of the noise of surface electrodes. Med. Biol. Eng. Comput. 2002, 40, 332–338.

[12]

Nawrocki, R. A.; Jin, H.; Lee, S.; Yokota, T.; Sekino, M.; Someya, T. Self-adhesive and ultra-conformable, Sub-300 nm dry thin-film electrodes for surface monitoring of biopotentials. Adv. Funct. Mater. 2018, 28, 1803279.

[13]

Dong, J. C.; Zhang, L. N.; Ding, F. Kinetics of graphene and 2D materials growth. Adv. Mater. 2019, 31, 1801583.

[14]

Kim, J.; Lee, Y.; Kang, M.; Hu, L.; Zhao, S. F.; Ahn, J. H. 2D materials for skin-mountable electronic devices. Adv. Mater. 2021, 33, 2005858.

[15]

Wang, B. L.; Sun, Y. F.; Ding, H. Y.; Zhao, X.; Zhang, L.; Bai, J. W.; Liu, K. Bioelectronics-related 2D materials beyond graphene: Fundamentals, properties, and applications. Adv. Funct. Mater. 2020, 30, 2003732.

[16]

Song, D. K.; Ye, G.; Zhao, Y.; Zhang, Y.; Hou, X. C.; Liu, N. An all-in-one, bioderived, air-permeable, and sweat-stable MXene epidermal electrode for muscle theranostics. ACS Nano 2022, 16, 17168–17178.

[17]

Zhou, H. L.; Yu, W. J.; Liu, L. X.; Cheng, R.; Chen, Y.; Huang, X. Q.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 2013, 4, 2096.

[18]

Wu, B.; Geng, D. C.; Xu, Z. P.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Self-organized graphene crystal patterns. NPG Asia Mater. 2013, 5, e36.

[19]

Chao, M. Y.; He, L. Z.; Gong, M.; Li, N.; Li, X. B.; Peng, L. F.; Shi, F.; Zhang, L. Q.; Wan, P. B. Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 2021, 15, 9746–9758.

[20]

Zhang, Y. Z.; El-Demellawi, J. K.; Jiang, Q.; Ge, G.; Liang, H. F.; Lee, K.; Dong, X. C.; Alshareef, H. N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020, 49, 7229–7251.

[21]

Zhang, W. F.; Zhang, Y.; Qiu, J. K.; Zhao, Z. H.; Liu, N. Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. InfoMat 2021, 3, 133–154.

[22]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[23]

Ameri, S. K.; Ho, R.; Jang, H.; Tao, L.; Wang, Y. H.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. S. Graphene electronic tattoo sensors. ACS Nano 2017, 11, 7634–7641.

[24]

Kireev, D.; Ameri, S. K.; Nederveld, A.; Kampfe, J.; Jang, H.; Lu, N. S.; Akinwande, D. Fabrication, characterization and applications of graphene electronic tattoos. Nat. Protoc. 2021, 16, 2395–2417.

[25]

Kireev, D.; Okogbue, E.; Jayanth, R. T.; Ko, T. J.; Jung, Y.; Akinwande, D. Multipurpose and reusable ultrathin electronic tattoos based on PtSe2 and PtTe2. ACS Nano 2021, 15, 2800–2811.

[26]

Xu, C.; Wang, L. B.; Liu, Z. B.; Chen, L.; Guo, J. K.; Kang, N.; Ma, X. L.; Cheng, H. M.; Ren, W. C. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 2015, 14, 1135–1141.

[27]

Zhang, Q.; Huang, W. C.; Yang, C. Y.; Wang, F.; Song, C. Q.; Gao, Y.; Qiu, Y. F.; Yan, M.; Yang, B.; Guo, C. S. The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomater. Sci. 2019, 7, 2729–2739.

[28]

Chi, J.-Q.; Yang, M.; Chai, Y.-M.; Yang, Z.; Wang, L.; Dong, B. Design and modulation principles of molybdenum carbide-based materials for green hydrogen evolution. J. Energy Chem. 2020, 48, 398–423.

[29]

Wan, J.; Wu, J. B.; Gao, X.; Li, T. Q.; Hu, Z. M.; Yu, H. M.; Huang, L. Structure confined porous Mo2C for efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1703933.

[30]

Yang, X.; Cheng, J.; Yang, X.; Xu, Y.; Sun, W. F.; Zhou, J. H. Facet-tunable coral-like Mo2C catalyst for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 2023, 451, 138977.

[31]

Feng, W.; Wang, R. Y.; Zhou, Y. D.; Ding, L.; Gao, X.; Zhou, B. G.; Hu, P.; Chen, Y. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Adv. Funct. Mater. 2019, 29, 1901942.

[32]

Geng, D. C.; Zhao, X. X.; Li, L. J.; Song, P.; Tian, B. B.; Liu, W.; Chen, J. Y.; Shi, D.; Lin, M.; Zhou, W. et al. Controlled growth of ultrathin Mo2C superconducting crystals on liquid Cu surface. 2D Mater. 2017, 4, 011012.

[33]

Ba, K.; Wang, G. L.; Ye, T.; Wang, X. R.; Sun, Y. Y.; Liu, H. Q.; Hu, A. Q.; Li, Z. Y.; Sun, Z. Z. Single faceted two-dimensional Mo2C electrocatalyst for highly efficient nitrogen fixation. ACS Catal. 2020, 10, 7864–7870.

[34]

Geng, D. C.; Zhao, X. X.; Chen, Z. X.; Sun, W. W.; Fu, W.; Chen, J. Y.; Liu, W.; Zhou, W.; Loh, K. P. Direct synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater. 2017, 29, 1700072.

[35]

Fan, Y. X.; Huang, L.; Geng, D. C.; Hu, W. P. Controlled growth of Mo2C pyramids on liquid Cu surface. J. Semicond. 2020, 41, 082001.

[36]

Turker, F.; Caylan, O. R.; Mehmood, N.; Kasirga, T. S.; Sevik, C.; Buke, G. C. CVD synthesis and characterization of thin Mo2C crystals. J. Amer. Ceram. Soc. 2020, 103, 5586–5593.

[37]

Qiao, J. B.; Gong, Y.; Zuo, W. J.; Wei, Y. C.; Ma, D. L.; Yang, H.; Yang, N.; Qiao, K. Y.; Shi, J. A.; Gu, L. et al. One-step synthesis of van der Waals heterostructures of graphene and two-dimensional superconducting α-Mo2C. Phys. Rev. B 2017, 95, 201403.

[38]

Fan, Y. J.; Li, X.; Kuang, S. Y.; Zhang, L.; Chen, Y. H.; Liu, L.; Zhang, K.; Ma, S. W.; Liang, F.; Wu, T. et al. Highly robust, transparent, and breathable epidermal electrode. ACS Nano 2018, 12, 9326–9332.

[39]

Wu, R. Z.; Pan, J.; Ou, X. W.; Zhang, Q. C.; Ding, Y.; Sheng, P.; Luo, Z. T. Concurrent fast growth of sub-centimeter single-crystal graphene with controlled nucleation density in a confined channel. Nanoscale 2017, 9, 9631–9640.

[40]

Guo, W.; Wu, B.; Wang, S.; Liu, Y. Q. Controlling fundamental fluctuations for reproducible growth of large single-crystal graphene. ACS Nano 2018, 12, 1778–1784.

[41]

Li, T. S.; Luo, W. J.; Kitadai, H.; Wang, X. Z.; Ling, X. Probing the domain architecture in 2D α-Mo2C via polarized Raman spectroscopy. Adv. Mater. 2019, 31, 1807160.

[42]

Qiu, J. K.; Yu, T. H.; Zhang, W. F.; Zhao, Z. H.; Zhang, Y.; Ye, G.; Zhao, Y.; Du, X. J.; Liu, X.; Yang, L. et al. A bioinspired, durable, and nondisposable transparent graphene skin electrode for electrophysiological signal detection. ACS Materials Lett. 2020, 2, 999–1007.

[43]

Zhao, Y.; Zhang, S.; Yu, T. H.; Zhang, Y.; Ye, G.; Cui, H.; He, C. Z.; Jiang, W. C.; Zhai, Y.; Lu, C. M. et al. Ultra-conformal skin electrodes with synergistically enhanced conductivity for long-time and low-motion artifact epidermal electrophysiology. Nat. Commun. 2021, 12, 4880.

[44]

Barold, S. S. Willem Einthoven and the birth of clinical electrocardiography a hundred years ago. Card. Electrophysiol. Rev. 2003, 7, 99–104.

[45]

Wei, H. H.; Shi, R. C.; Sun, L.; Yu, H. Y.; Gong, J. D.; Liu, C.; Xu, Z. P.; Ni, Y.; Xu, J. L.; Xu, W. T. Mimicking efferent nerves using a graphdiyne-based artificial synapse with multiple ion diffusion dynamics. Nat. Commun. 2021, 12, 1068.

[46]

Kim, Y.; Chortos, A.; Xu, W. T.; Liu, Y. X.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C. X.; Lee, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003.

[47]

Sun, L.; Du, Y.; Yu, H. Y.; Wei, H. H.; Xu, W. L.; Xu, W. T. An artificial reflex arc that perceives afferent visual and tactile information and controls efferent muscular actions. Research 2022, 2022, 9851843.

Video
12274_5423_ESM1_ESM.mp4
File
12274_2023_5423_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 October 2022
Revised: 02 December 2022
Accepted: 17 December 2022
Published: 19 January 2023
Issue date: March 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21903007, 22072006, and 22275022), Young Thousand Talents Program (No. 110532103), Beijing Normal University Startup funding (No. 312232102), Beijing Municipal Science & Technology Commission (No. Z191100000819002), and the Fundamental Research Funds for the Central Universities (No. 310421109).

Return