Journal Home > Volume 16 , Issue 5

Incorporating metal nanodots (NDs) into heterostructures for high charge separation and transfer capacities is one of the most effective strategies for improving their photocatalytic activities. However, controlling the space distribution of metal NDs for optimizing charge transport pathways remains a significant challenge, particularly in two-dimensional (2D) face-to-face heterostructures. Herein, we develop a simple targeted self-reduction strategy for selectively loading Ru NDs onto the Ti3−xC2Ty (TC) surface of 2D TC/g-C3N4 (CN) heterojunction based on the reductive Ti vacancy defects creatively increased during the preparation of TC/CN by reducing calcination. Notably, the optimized Ru/TC/CN photocatalyst exhibits an outstanding H2 evolution rate of 3.21 mmol·g−1·h−1 and a high apparent quantum efficiency of 30.9% at 380 nm, which is contributed by the unidirectional transfer of the photogenerated electrons from CN to Ru active sites (CN → TC → Ru) and the suppressed backflow of electrons from Ru sites to CN, as revealed by comprehensive characterizations and density functional theory (DFT) calculations. This work provides a novel strategy for synthesizing the highly efficient photocatalysts with a controllable charge transfer paths, which will boost the development of photocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational distribution of Ru nanodots on 2D Ti3−xC2Ty/g-C3N4 heterostructures for boosted photocatalytic H2 evolution

Show Author's information Wen-Jing Yi1,§Xin Du1,§Meng Zhang1Sha-Sha Yi2Rui-Hao Xia1Chuan-Qi Li1Yan Liu1Zhong-Yi Liu1Wen-Lei Zhang1( )Xin-Zheng Yue1( )
College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

§ Wen-Jing Yi and Xin Du contributed equally to this work.

Abstract

Incorporating metal nanodots (NDs) into heterostructures for high charge separation and transfer capacities is one of the most effective strategies for improving their photocatalytic activities. However, controlling the space distribution of metal NDs for optimizing charge transport pathways remains a significant challenge, particularly in two-dimensional (2D) face-to-face heterostructures. Herein, we develop a simple targeted self-reduction strategy for selectively loading Ru NDs onto the Ti3−xC2Ty (TC) surface of 2D TC/g-C3N4 (CN) heterojunction based on the reductive Ti vacancy defects creatively increased during the preparation of TC/CN by reducing calcination. Notably, the optimized Ru/TC/CN photocatalyst exhibits an outstanding H2 evolution rate of 3.21 mmol·g−1·h−1 and a high apparent quantum efficiency of 30.9% at 380 nm, which is contributed by the unidirectional transfer of the photogenerated electrons from CN to Ru active sites (CN → TC → Ru) and the suppressed backflow of electrons from Ru sites to CN, as revealed by comprehensive characterizations and density functional theory (DFT) calculations. This work provides a novel strategy for synthesizing the highly efficient photocatalysts with a controllable charge transfer paths, which will boost the development of photocatalysis.

Keywords: selective growth, photocatalytic H2 evolution, targeted self-reduction strategy, unidirectional electron migration, Ru/Ti3−xC2Ty/g-C3N4

References(40)

[1]

Dai, C. H.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy Environ. Sci. 2020, 13, 24–52.

[2]

Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.

[3]

Cai, H. R.; Wang, B.; Xiong, L. F.; Bi, J. L.; Hao, H. J.; Yu, X. J.; Li, C.; Liu, J. M.; Yang, S. C. Boosting photocatalytic hydrogen evolution of g-C3N4 catalyst via lowering the Fermi level of co-catalyst. Nano Res. 2022, 15, 1128–1134.

[4]

Ben, H. J.; Liu, Y.; Liu, X.; Liu, X. F.; Ling, C. C.; Liang, C.; Zhang, L. Z. Diffusion-controlled Z-scheme-steered charge separation across PDI/BiOI heterointerface for ultraviolet, visible, and infrared light-driven photocatalysis. Adv. Funct. Mater. 2021, 31, 2102315.

[5]

Qi, M. Y.; Li, Y. H.; Anpo, M.; Tang, Z. R.; Xu, Y. J. Efficient photoredox-mediated C–C coupling organic synthesis and hydrogen production over engineered semiconductor quantum dots. ACS Catal. 2020, 10, 14327–14335.

[6]

Yang, C.; Tan, Q. Y.; Li, Q.; Zhou, J.; Fan, J. J.; Li, B.; Sun, J.; Lv, K. L. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst:Dual effects of urea. Appl. Catal. B 2020, 268, 118738.

[7]

Ai, Z. Z.; Shao, Y. L.; Chang, B.; Zhang, L.; Shen, J. X.; Wu, Y. Z.; Huang, B. B.; Hao, X. P. Rational modulation of p-n homojunction in P-doped g-C3N4 decorated with Ti3C2 for photocatalytic overall water splitting. Appl. Catal. B 2019, 259, 118077.

[8]

Zhang, N.; Qi, M. Y.; Yuan, L.; Fu, X. Z.; Tang, Z. R.; Gong, J. L.; Xu, Y. J. Broadband light harvesting and unidirectional electron flow for efficient electron accumulation for hydrogen generation. Angew. Chem., Int. Ed. 2019, 58, 10003–10007.

[9]

Lin, Z. X.; Zhao, Y.; Luo, J. H.; Jiang, S. J.; Sun, C. Z.; Song, S. Q. Apparent potential difference boosting directional electron transfer for full solar spectrum-irradiated catalytic H2 evolution. Adv. Funct. Mater. 2020, 30, 1908797.

[10]

Li, W.; Chu, X. S.; Wang, F.; Dang, Y. Y.; Liu, X. Y.; Wang, X. C.; Wang, C. Y. Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution. Appl. Catal. B 2021, 288, 120034.

[11]

Cheng, C.; Zong, S. C.; Shi, J. W.; Xue, F.; Zhang, Y. Z.; Guan, X. J.; Zheng, B. T.; Deng, J. K.; Guo, L. J. Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Appl. Catal. B 2020, 265, 118620.

[12]

Liu, Y. P.; Li, Y. H.; Li, X. Y.; Zhang, Q.; Yu, H.; Peng, X. W.; Peng, F. Regulating electron–hole separation to promote photocatalytic H2 evolution activity of nanoconfined Ru/MXene/TiO2 catalysts. ACS Nano 2020, 14, 14181–14189.

[13]

Wang, H. Y.; Niu, R. R.; Liu, J. H.; Guo, S.; Yang, Y. P.; Liu, Z. Y.; Li, J. Electrostatic self-assembly of 2D/2D CoWO4/g-C3N4 p–n heterojunction for improved photocatalytic hydrogen evolution: Built-in electric field modulated charge separation and mechanism unveiling. Nano Res. 2022, 15, 6987–6998.

[14]
Foo, J. J.; Ng, S. F.; Ong, W. J. Dimensional heterojunction design: The rising star of 2D bismuth-based nanostructured photocatalysts for solar-to-chemical conversion. Nano Res., in press, https://doi.org/10.1007/s12274-021-4045-0.
[15]

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

[16]

Yu, H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.

[17]
Li, X. J.; Zhang, P. P.; Zhang, H. Y.; Tian, W. J.; Yang, Y. Y.; Hu, K. S.; Chen, D. C.; Li, Q.; Duan, X. G.; Sun, H. Q. et al. Van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-021-3744-x.
[18]

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

[19]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[20]

Xu, C. P.; Anusuyadevi, P. R.; Aymonier, C.; Luque, R.; Marre, S. Nanostructured materials for photocatalysis. Chem. Soc. Rev. 2019, 48, 3868–3902.

[21]

Zhao, D.; Chen, Z.; Yang, W. J.; Liu, S. J.; Zhang, X.; Yu, Y.; Cheong, W. C.; Zheng, L. R.; Ren, F. Q.; Ying, G. B. et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2. J. Am. Chem. Soc. 2019, 141, 4086–4093.

[22]

Li, J. M.; Zhao, L.; Wang, S. M.; Li, J.; Wang, G. H.; Wang, J. In situ fabrication of 2D/3D g-C3N4/Ti3C2 (MXene) heterojunction for efficient visible-light photocatalytic hydrogen evolution. Appl. Surf. Sci. 2020, 515, 145922.

[23]

Tang, R.; Zhou, S. J.; Li, C. X.; Chen, R.; Zhang, L. Y.; Zhang, Z. W.; Yin, L. W. Janus-structured Co-Ti3C2 MXene quantum dots as a Schottky catalyst for high-performance photoelectrochemical water oxidation. Adv. Funct. Mater. 2020, 30, 2000637.

[24]

Li, R. Y.; Zhang, L. B.; Shi, L.; Wang, P. MXene Ti3C2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752–3759.

[25]

Chang, B. B.; Guo, Y. Z.; Wu, D. H.; Li, L.; Yang, B. C.; Wang, J. F. Plasmon-enabled N2 photofixation on partially reduced Ti3C2 MXene. Chem. Sci. 2021, 12, 11213–11224.

[26]

Liu, D. N.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Surface engineering of g-C3N4 by stacked BiOBr sheets rich in oxygen vacancies for boosting photocatalytic performance. Angew. Chem., Int. Ed. 2020, 59, 4519–4524.

[27]

Li, B. L.; Song, H. Y.; Han, F. Q.; Wei, L. S. Photocatalytic oxidative desulfurization and denitrogenation for fuels in ambient air over Ti3C2/g-C3N4 composites under visible light irradiation. Appl. Catal. B 2020, 269, 118845.

[28]

Su, T. M.; Hood, Z. D.; Naguib, M.; Bai, L.; Luo, S.; Rouleau, C. M.; Ivanov, I. N.; Ji, H. B.; Qin, Z. Z.; Wu, Z. L. 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale 2019, 11, 8138–8149.

[29]

Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

[30]

Li, Y. T.; Zhang, S. H.; Zheng, G. P.; Liu, P.; Peng, Z. K.; Zheng, X. C. Ultrafine Ru nanoparticles anchored to porous g-C3N4 as efficient catalysts for ammonia borane hydrolysis. Appl. Catal. A 2020, 595, 117511.

[31]

Li, C. Q.; Yi, S. S.; Liu, Y.; Niu, Z. L.; Yue, X. Z.; Liu, Z. Y. In-situ constructing S-scheme/Schottky junction and oxygen vacancy on SrTiO3 to steer charge transfer for boosted photocatalytic H2 evolution. Chem. Eng. J. 2021, 417, 129231.

[32]

Wang, N.; Wang, D. X.; Wu, A. P.; Wang, S. Y.; Li, Z. H.; Jin, C. X.; Dong, Y. M.; Kong, F. Y.; Tian, C. G.; Fu, H. G. Few-layered MoS2 anchored on 2D porous C3N4 nanosheets for Pt-free photocatalytic hydrogen evolution. Nano Res. 2023, 16, 3524–3535.

[33]

Bao, X. L.; Li, H. L.; Wang, Z. Y.; Tong, F. X.; Liu, M.; Zheng, Z. K.; Wang, P.; Cheng, H. F.; Liu, Y. Y.; Dai, Y. et al. TiO2/Ti3C2 as an efficient photocatalyst for selective oxidation of benzyl alcohol to benzaldehyde. Appl. Catal. B 2021, 286, 119885.

[34]

Han, X.; An, L.; Hu, Y.; Li, Y. G.; Hou, C. Y.; Wang, H. Z.; Zhang, Q. H. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Appl. Catal. B 2020, 265, 118539.

[35]

Li, J. Y.; Li, Y. H.; Zhang, F.; Tang, Z. R.; Xu, Y. J. Visible-light-driven integrated organic synthesis and hydrogen evolution over 1D/2D CdS-Ti3C2Tx MXene composites. Appl. Catal. B 2020, 269, 118783.

[36]

Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. Q. MoB/g-C3N4 interface materials as a Schottky catalyst to boost hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 496–500.

[37]

Yang, Y.; Zeng, Z. T.; Zeng, G. M.; Huang, D. L.; Xiao, R.; Zhang, C.; Zhou, C. Y.; Xiong, W. P.; Wang, W. J.; Cheng, M. et al. Ti3C2 MXene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. Appl. Catal. B 2019, 258, 117956.

[38]

Guo, S. Q.; Zhang, H. J.; Hu, Z. Z.; Zhen, M. M.; Yang, B.; Shen, B. X.; Dong, F. Composition-dependent micro-structure and photocatalytic performance of g-C3N4 quantum dots@SnS2 heterojunction. Nano Res. 2021, 14, 4188–4196.

[39]

Yue, X. Z.; Yi, S. S.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. Well-controlled SrTiO3@Mo2C core–shell nanofiber photocatalyst: Boosted photo-generated charge carriers transportation and enhanced catalytic performance for water reduction. Nano Energy 2018, 47, 463–473.

[40]

Zeng, H.; Li, Z. H.; Li, G. S.; Cui, X. Q.; Jin, M. X.; Xie, T. F.; Liu, L. L.; Jiang, M. P.; Zhong, X.; Zhang, Y. W. et al. Interfacial engineering of TiO2/Ti3C2 MXene/carbon nitride hybrids boosting charge transfer for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2022, 12, 2102765.

File
12274_2022_5422_MOESM1_ESM.pdf (8.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 October 2022
Revised: 03 December 2022
Accepted: 18 December 2022
Published: 27 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported in part by the National Natural Science Foundation of China (No. 22002142), China Postdoctoral Science Foundation (No. 2020T130605), Natural Science Foundation of Henan Province (No. 202300410436), Support Plan for College Science and Technology Innovation Team of Henan Province (No. 16IRTSTHN001), and the Science & Technology Innovation Talent Plan of Henan Province (No. 174200510018). The DFT calculation is supported by Supercomputer Center at Zhengzhou University (Zhengzhou).

Return