Journal Home > Volume 16 , Issue 5

The state of nitrogen in nitrogen-doped graphene (NG) promoting the conversion of molecular oxygen to hydrogen peroxide was investigated. The oxygen reduction reaction (ORR) reactivity of graphitic-N, pyrrolic-N, and pyridinic-N in NG was predicted by density functional theory (DFT). A series of NG samples with different contents of these doped nitrogen types were prepared by the low-temperature thermal reduction method and used for the ORR evaluation. The H2O2 yield, 2e ORR current efficiency, H2O2 selectivity, and electron transfer number (n) were systematically studied. The 2e ORR selectivity was positively correlated with the N content, approaching 100% with increasing N content (0.40 V vs. reversible hydrogen electrode (RHE)), whereas the comparative energy efficiency showed a volcano-type trend related to N content, reaching a maximum of 94%. In addition, N species validation experiments proved the key role of pyrrolic-N in the synthesis of H2O2. Compared with a pure graphene catalyst, further contaminant degradation studies on NG electrodes with different pyrrolic-N contents revealed that the lower pyrrolic-N the higher removal of p-nitrophenol (PNP). This work provides insight into the mechanism of ORR on metal-free catalysts and a facile approach to optimize this important environmental catalytic strategy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Identifying the key N species for electrocatalytic oxygen reduction reaction on N-doped graphene

Show Author's information Yiyin Peng1Zhaoyong Bian1( )Wenhai Zhang1Hui Wang2
College of Water Sciences, Beijing Normal University, Beijing 100875, China
College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China

Abstract

The state of nitrogen in nitrogen-doped graphene (NG) promoting the conversion of molecular oxygen to hydrogen peroxide was investigated. The oxygen reduction reaction (ORR) reactivity of graphitic-N, pyrrolic-N, and pyridinic-N in NG was predicted by density functional theory (DFT). A series of NG samples with different contents of these doped nitrogen types were prepared by the low-temperature thermal reduction method and used for the ORR evaluation. The H2O2 yield, 2e ORR current efficiency, H2O2 selectivity, and electron transfer number (n) were systematically studied. The 2e ORR selectivity was positively correlated with the N content, approaching 100% with increasing N content (0.40 V vs. reversible hydrogen electrode (RHE)), whereas the comparative energy efficiency showed a volcano-type trend related to N content, reaching a maximum of 94%. In addition, N species validation experiments proved the key role of pyrrolic-N in the synthesis of H2O2. Compared with a pure graphene catalyst, further contaminant degradation studies on NG electrodes with different pyrrolic-N contents revealed that the lower pyrrolic-N the higher removal of p-nitrophenol (PNP). This work provides insight into the mechanism of ORR on metal-free catalysts and a facile approach to optimize this important environmental catalytic strategy.

Keywords: nitrogen-doped graphene, oxygen reduction, electrocatalysis, environmental remediation

References(52)

[1]

Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

[2]

Yang, L. J.; Shui, J. L.; Du, L.; Shao, Y. Y.; Liu, J.; Dai, L. M.; Hu, Z. Carbon-based metal-free ORR electrocatalysts for fuel cells: Past, present, and future. Adv. Mater. 2019, 31, 1804799.

[3]

Kangkamano, T.; Vagin, M.; Meng, L. Y.; Thavarungkul, P.; Kanatharana, P.; Crispin, X.; Mak, W. C. Product-to-intermediate relay achieving complete oxygen reduction reaction (cORR) with Prussian blue integrated nanoporous polymer cathode in fuel cells. Nano Energy 2020, 78, 105125.

[4]

Jung, E.; Shin, H.; Antink, W. H.; Sung, Y. E.; Hyeon, T. Recent advances in electrochemical oxygen reduction to H2O2: Catalyst and cell design. ACS Energy Lett. 2020, 5, 1881–1892.

[5]

Wang, Y. L.; Waterhouse, G. I. N.; Shang, L.; Zhang, T. R. Electrocatalytic oxygen reduction to hydrogen peroxide: From homogeneous to heterogeneous electrocatalysis. Adv. Energy Mater. 2021, 11, 2003323.

[6]

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

[7]

Geng, X. L.; Wang, L.; Zhang, L.; Wang, H.; Peng, Y. Y.; Bian, Z. Y. H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst. Chem. Eng. J. 2021, 420, 129722.

[8]

Song, X. Z.; Zhang, H.; Bian, Z. Y.; Wang, H. In situ electrogeneration and activation of H2O2 by atomic Fe catalysts for the efficient removal of chloramphenicol. J. Hazard. Mater. 2021, 412, 125162.

[9]

Li, Y.; Miller, C. J.; Wu, L.; Waite, T. D. Hydroxyl radical production via a reaction of electrochemically generated hydrogen peroxide and atomic hydrogen: An effective process for contaminant oxidation? Environ. Sci. Technol. 2022, 56, 5820–5829.

[10]

Lee, J.; Choi, S. W.; Back, S.; Jang, H.; Sa, Y. J. Pd17Se15-Pd3B nanocoral electrocatalyst for selective oxygen reduction to hydrogen peroxide in near-neutral electrolyte. Appl. Catal. B Environ. 2022, 309, 121265.

[11]

Sun, Y. Y.; Silvioli, L.; Sahraie, N. R.; Ju, W.; Li, J. K.; Zitolo, A.; Li, S.; Bagger, A.; Arnarson, L.; Wang, X. L. et al. Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381.

[12]

Tang, C.; Chen, L.; Li, H. J.; Li, L. Q.; Jiao, Y.; Zheng, Y.; Xu, H. L.; Davey, K.; Qiao, S. Z. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827.

[13]

Liu, J. J.; Gong, Z. C.; Yan, M. M.; He, G. C.; Gong, H. S.; Ye, G. L.; Fei, H. L. Electronic structure regulation of single-atom catalysts for electrochemical oxygen reduction to H2O2. Small 2022, 18, 2103824.

[14]

Dong, K.; Liang, J.; Wang, Y. Y.; Zhang, L. C.; Xu, Z. Q.; Sun, S. J.; Luo, Y. S.; Li, T. S.; Liu, Q.; Li, N. et al. Conductive two-dimensional magnesium metal-organic frameworks for high-efficiency O2 electroreduction to H2O2. ACS Catal. 2022, 12, 6092–6099.

[15]

Su, P.; Fu, W. Y.; Hu, Z. Z.; Jing, J. N.; Zhou, M. H. Insights into transition metal encapsulated N-doped CNTs cathode for self-sufficient electrocatalytic degradation. Appl. Catal. B Environ. 2022, 313, 121457.

[16]

Hu, Y. Z.; Zhang, J. J.; Shen, T.; Li, Z. R.; Chen, K.; Lu, Y.; Zhang, J.; Wang, D. L. Efficient electrochemical production of H2O2 on hollow n-doped carbon nanospheres with abundant micropores. ACS Appl. Mater. Interfaces 2021, 13, 29551–29557.

[17]

Zhou, W.; Xie, L.; Gao, J. H.; Nazari, R.; Zhao, H. Q.; Meng, X. X.; Sun, F.; Zhao, G. B.; Ma, J. Selective H2O2 electrosynthesis by O-doped and transition-metal-O-doped carbon cathodes via O2 electroreduction: A critical review. Chem. Eng. J. 2021, 410, 128368.

[18]

Liu, W.; Zhang, C.; Zhang, J. J.; Huang, X.; Song, M.; Li, J. W.; He, F.; Yang, H. P.; Zhang, J.; Wang, D. L. Tuning the atomic configuration of Co-N-C electrocatalyst enables highly-selective H2O2 production in acidic media. Appl. Catal. B Environ. 2022, 310, 121312.

[19]

Zhang, W. H.; Bian, Z. Y.; Xin, X.; Wang, L.; Geng, X. L.; Wang, H. Comparison of visible light driven H2O2 and peroxymonosulfate degradation of norfloxacin using Co/g-C3N4. Chemosphere 2021, 262, 127955.

[20]

Lee, K.; Lim, J.; Lee, M. J.; Ryu, K.; Lee, H.; Kim, J. Y.; Ju, H.; Cho, H. S.; Kim, B. H.; Hatzell, M. C. et al. Structure-controlled graphene electrocatalysts for high-performance H2O2 production. Energy Environ. Sci. 2022, 15, 2858–2866.

[21]

Kim, H. W.; Ross, M. B.; Kornienko, N.; Zhang, L.; Guo, J. H.; Yang, P. D.; McCloskey, B. D. Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 2018, 1, 282–290.

[22]

Lu, Z. Y.; Chen, G. X.; Siahrostami, S.; Chen, Z. H.; Liu, K.; Xie, J.; Liao, L.; Wu, T.; Lin, D. C.; Liu, Y. Y. et al. High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 2018, 1, 156–162.

[23]
Wu, K. H.; Wang, D.; Lu, X. Y.; Zhang, X. F.; Xie, Z. L.; Liu, Y. F.; Su, B. J.; Chen, J. M.; Su, D. S.; Qi, W. et al. Highly selective hydrogen peroxide electrosynthesis on carbon: In situ interface engineering with surfactants. Chem 2020, 6, 1443–1458.
[24]

Buan, M. E. M.; Muthuswamy, N.; Walmsley, J. C.; Chen, D.; Rønning, M. Nitrogen-doped carbon nanofibers on expanded graphite as oxygen reduction electrocatalysts. Carbon 2016, 101, 191–202.

[25]

Zhang, C. Y.; Liu, G. Z.; Ning, B.; Qian, S. R.; Zheng, D. N.; Wang, L. Highly efficient electrochemical generation of H2O2 on N/O co-modified defective carbon. Int. J. Hydrogen Energy 2021, 46, 14277–14287.

[26]

Ding, Y. N.; Zhou, W.; Gao, J. H.; Sun, F.; Zhao, G. B. H2O2 electrogeneration from O2 electroreduction by N-doped carbon materials:A mini-review on preparation methods, selectivity of N sites, and prospects. Adv. Mater. Interfaces 2021, 8, 2002091.

[27]

Ren, W. H.; Tan, X.; Yang, W. F.; Jia, C.; Xu, S. M.; Wang, K. X.; Smith, S. C.; Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

[28]

Du, Z. Z.; Chen, X. J.; Hu, W.; Chuang, C. H.; Xie, S.; Hu, A. J.; Yan, W. S.; Kong, X. H.; Wu, X. J.; Ji, H. X. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985.

[29]

Su, P.; Zhou, M. H.; Song, G.; Du, X. D.; Lu, X. Y. Efficient H2O2 generation and spontaneous ·OH conversion for in-situ phenol degradation on nitrogen-doped graphene: Pyrolysis temperature regulation and catalyst regeneration mechanism. J. Hazard. Mater. 2020, 397, 122681.

[30]

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

[31]

Zhao, X. H.; Liu, Y. Y. Origin of selective production of hydrogen peroxide by electrochemical oxygen reduction. J. Am. Chem. Soc. 2021, 143, 9423–9428.

[32]

He, F.; Zheng, Y.; Fan, H. L.; Ma, D. L.; Chen, Q. F.; Wei, T.; Wu, W. B.; Wu, D.; Hu, X. Oxidase-inspired selective 2e/4e reduction of oxygen on electron-deficient Cu. ACS Appl. Mater. Interfaces 2020, 12, 4833–4842.

[33]

Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512.

[34]

Lu, X. F.; Gu, L. F.; Wang, J. W.; Wu, J. X.; Liao, P. Q.; Li, G. R. Bimetal-organic framework derived CoFe2O4/C porous hybrid nanorod arrays as high-performance electrocatalysts for oxygen evolution reaction. Adv. Mater. 2017, 29, 1604437.

[35]

Sun, J. Q.; Lowe, S. E.; Zhang, L. J.; Wang, Y. Z.; Pang, K. L.; Wang, Y.; Zhong, Y. L.; Liu, P. R.; Zhao, K.; Tang, Z. Y. et al. Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media. Angew. Chem., Int. Ed. 2018, 57, 16511–16515.

[36]

Kim, H. W.; Park, H.; Roh, J. S.; Shin, J. E.; Lee, T. H.; Zhang, L.; Cho, Y. H.; Yoon, H. W.; Bukas, V. J.; Guo, J. H. et al. Carbon defect characterization of nitrogen-doped reduced graphene oxide electrocatalysts for the two-electron oxygen reduction reaction. Chem. Mater. 2019, 31, 3967–3973.

[37]

Kim, H. W.; Bukas, V. J.; Park, H.; Park, S.; Diederichsen, K. M.; Lim, J.; Cho, Y. H.; Kim, J.; Kim, W.; Han, T. H. et al. Mechanisms of two-electron and four-electron electrochemical oxygen reduction reactions at nitrogen-doped reduced graphene oxide. ACS Catal. 2020, 10, 852–863.

[38]

Song, X. Z.; Li, N.; Zhang, H.; Wang, L.; Yan, Y. J.; Wang, H.; Wang, L. Y.; Bian, Z. Y. Graphene-supported single nickel atom catalyst for highly selective and efficient hydrogen peroxide production. ACS Appl. Mater. Interfaces 2020, 12, 17519–17527.

[39]

Du, D. H.; Li, P. C.; Ouyang, J. Y. Nitrogen-doped reduced graphene oxide prepared by simultaneous thermal reduction and nitrogen doping of graphene oxide in air and its application as an electrocatalyst. ACS Appl. Mater. Interfaces 2015, 7, 26952–26958.

[40]

Qu, L. T.; Liu, Y.; Baek, J. B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

[41]

Xiao, F.; Wang, Z. N.; Fan, J. Q.; Majima, T.; Zhao, H. Y.; Zhao, G. H. Selective electrocatalytic reduction of oxygen to hydroxyl radicals via 3-electron pathway with FeCo alloy encapsulated carbon aerogel for fast and complete removing pollutants. Angew. Chem., Int. Ed. 2021, 60, 10375–10383.

[42]

Lin, Y.; Jin, J.; Song, M. Preparation and characterisation of covalent polymer functionalized graphene oxide. J. Mater. Chem. 2011, 21, 3455–3461.

[43]

Yang, Y. J.; Bian, Z. Y. Oxygen doping through oxidation causes the main active substance in g-C3N4 photocatalysis to change from holes to singlet oxygen. Sci. Total Environ. 2021, 753, 141908.

[44]

Zhang, W. H.; Peng, Y. Y.; Yang, Y. J.; Zhang, L.; Bian, Z. Y.; Wang, H. Bismuth-rich strategy intensifies the molecular oxygen activation and internal electrical field for the photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2022, 430, 132963.

[45]

Yang, H.; Zhao, F. Y.; Cao, X. Y.; Liu, Q. Y.; Zhang, X. X.; Zhang, X. Porphyrin-modified cobalt sulfide as a developed noble metal-free photoelectrocatalyst toward methanol oxidation under visible light. J. Phys. Chem. C 2020, 124, 26678–26687.

[46]

Ai, J.; Yin, W. Z.; Hansen, H. C. B. Fast dechlorination of chlorinated ethylenes by green rust in the presence of bone char. Environ. Sci. Technol. Lett. 2019, 6, 191–196.

[47]

Su, P.; Zhou, M. H.; Lu, X. Y.; Yang, W. L.; Ren, G. B.; Cai, J. J. Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant. Appl. Catal. B Environ. 2019, 245, 583–595.

[48]

Yu, F. K.; Tao, L.; Yang, Y.; Wang, S. Electrochemical catalytic mechanism of N-doped electrode for in-situ generation of·OH in metal-free EAOPs to degrade organic pollutants. Sep. Purif. Technol. 2021, 277, 119432.

[49]

Yang, W. L.; Zhou, M. H.; Liang, L. Highly efficient in-situ metal-free electrochemical advanced oxidation process using graphite felt modified with N-doped graphene. Chem. Eng. J. 2018, 338, 700–708.

[50]

Nam, G.; Park, J.; Kim, S. T.; Shin, D. B.; Park, N.; Kim, Y.; Lee, J. S.; Cho, J. Metal-free Ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Lett. 2014, 14, 1870–1876.

[51]

Zhang, W. H.; Bian, Z. Y.; Peng, Y. Y.; Tang, H. Y.; Wang, H. Dual-function oxygen vacancy of BiOBr intensifies pollutant adsorption and molecular oxygen activation to remove tetracycline hydrochloride. Chem. Eng. J. 2023, 451, 138731.

[52]

Yang, Y. J.; Bian, Z. Y.; Zhang, L.; Wang, H. Bi@BiOx(OH)y modified oxidized g-C3N4 photocatalytic removal of tetracycline hydrochloride with highly effective oxygen activation. J. Hazard. Mater. 2022, 427, 127866.

File
12274_2022_5421_MOESM1_ESM.pdf (8.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 October 2022
Revised: 20 November 2022
Accepted: 18 December 2022
Published: 28 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The present work is financially supported by the Beijing Natural Science Foundation of China (No. 8222061), the National Natural Science Foundation of China (Nos. 21872009 and 52070015), and the National Key Research and Development Program of China (No. 2018YFC1802500).

Return