Journal Home > Volume 16 , Issue 9

As extremely important physiological indicators, respiratory signals can often reflect or predict the depth and urgency of various diseases. However, designing a wearable respiratory monitoring system with convenience, excellent durability, and high precision is still an urgent challenge. Here, we designed an easy-fabricate, lightweight, and badge reel-like retractable self-powered sensor (RSPS) with high precision, sensitivity, and durability for continuous detection of important indicators such as respiratory rate, apnea, and respiratory ventilation. By using three groups of interdigital electrode structures with phase differences, combined with flexible printed circuit boards (FPCBs) processing technology, a miniature rotating thin-film triboelectric nanogenerator (RTF-TENG) was developed. Based on discrete sensing technology, the RSPS has a sensing resolution of 0.13 mm, sensitivity of 7 P·mm−1, and durability more than 1 million stretching cycles, with low hysteresis and excellent anti-environmental interference ability. Additionally, to demonstrate its wearability, real-time, and convenience of respiratory monitoring, a multifunctional wearable respiratory monitoring system (MWRMS) was designed. The MWRMS demonstrated in this study is expected to provide a new and practical strategy and technology for daily human respiratory monitoring and clinical diagnosis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Miniaturized retractable thin-film sensor for wearable multifunctional respiratory monitoring

Show Author's information Chengyu Li1,2,§Zijie Xu1,2,§Shuxing Xu1,3,§Tingyu Wang1,2Siyu Zhou4Zhuoran Sun4Zhong Lin Wang1,5( )Wei Tang1,2,3( )
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning 530004, China
Peking University Third Hospital, Beijing 100191, China
Georgia Institute of Technology, Atlanta, GA 30332, USA

§ Chengyu Li, Zijie Xu, and Shuxing Xu contributed equally to this work.

Abstract

As extremely important physiological indicators, respiratory signals can often reflect or predict the depth and urgency of various diseases. However, designing a wearable respiratory monitoring system with convenience, excellent durability, and high precision is still an urgent challenge. Here, we designed an easy-fabricate, lightweight, and badge reel-like retractable self-powered sensor (RSPS) with high precision, sensitivity, and durability for continuous detection of important indicators such as respiratory rate, apnea, and respiratory ventilation. By using three groups of interdigital electrode structures with phase differences, combined with flexible printed circuit boards (FPCBs) processing technology, a miniature rotating thin-film triboelectric nanogenerator (RTF-TENG) was developed. Based on discrete sensing technology, the RSPS has a sensing resolution of 0.13 mm, sensitivity of 7 P·mm−1, and durability more than 1 million stretching cycles, with low hysteresis and excellent anti-environmental interference ability. Additionally, to demonstrate its wearability, real-time, and convenience of respiratory monitoring, a multifunctional wearable respiratory monitoring system (MWRMS) was designed. The MWRMS demonstrated in this study is expected to provide a new and practical strategy and technology for daily human respiratory monitoring and clinical diagnosis.

Keywords: triboelectric nanogenerator, self-powered, respiratory monitoring, discrete and vector, thin-film sensors

References(46)

[1]

Ferkol, T.; Schraufnagel, D. The global burden of respiratory disease. Ann. Am. Thorac. Soc. 2014, 11, 404–406.

[2]

Nurmagambetov, T.; Kuwahara, R.; Garbe, P. The economic burden of asthma in the United States, 2008–2013. Ann. Am. Thorac. Soc. 2018, 15, 348–356.

[3]

Guarascio, A. J.; Ray, S. M.; Finch, C. K.; Self, T. H. The clinical and economic burden of chronic obstructive pulmonary disease in the USA. Clinicoecon. Outcomes Res. 2013, 5, 235–245.

[4]

Pekar, J.; Worobey, M.; Moshiri, N.; Scheffler, K.; Wertheim, J. O. Timing the SARS-CoV-2 index case in Hubei province. Science 2021, 372, 412–417.

[5]

Cao, B.; Wang, Y. M.; Wen, D. N.; Liu, W.; Wang, J. L.; Fan, G. H.; Ruan, L. G.; Song, B.; Cai, Y. P.; Wei, M. et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020, 382, 1787–1799.

[6]

Sachs, J. D.; Karim, S. S. A.; Aknin, L.; Allen, J.; Brosbøl, K.; Colombo, F.; Barron, G. C.; Espinosa, M. F.; Gaspar, V.; Gaviria, A. et al. The Lancet commission on lessons for the future from the COVID-19 pandemic. Lancet 2022, 400, 1224–1280.

[7]

Liu, X. H.; Zhang, D. Z.; Wang, D. Y.; Li, T. T.; Song, X. S.; Kang, Z. J. A humidity sensing and respiratory monitoring system constructed from quartz crystal microbalance sensors based on a chitosan/polypyrrole composite film. J. Mater. Chem. A 2021, 9, 14524–14533.

[8]

Chu, M.; Nguyen, T.; Pandey, V.; Zhou, Y. X.; Pham, H. N.; Bar-Yoseph, R.; Radom-Aizik, S.; Jain, R.; Cooper, D. M.; Khine, M. Respiration rate and volume measurements using wearable strain sensors. NPJ Digit. Med. 2019, 2, 8.

[9]

Su, Y. J.; Chen, G. R.; Chen, C. X.; Gong, Q. C.; Xie, G. Z.; Yao, M. L.; Tai, H. L.; Jiang, Y. D.; Chen, J. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv. Mater. 2021, 33, 2101262.

[10]

Fang, Y. S.; Xu, J.; Xiao, X.; Zou, Y. L.; Zhao, X.; Zhou, Y. H.; Chen, J. A deep-learning-assisted on-mask sensor network for adaptive respiratory monitoring. Adv. Mater. 2022, 34, 2200252.

[11]

Zou, Y.; Gai, Y. S.; Tan, P. C.; Jiang, D. J.; Qu, X. C.; Xue, J. T.; Ouyang, H.; Shi, B. J.; Li, L. L.; Luo, D. et al. Stretchable graded multichannel self-powered respiratory sensor inspired by shark gill. Fundam. Res. 2022, 2, 619–628.

[12]

Song, Y.; Min, J. H.; Yu, Y.; Wang, H. B.; Yang, Y. R.; Zhang, H. X.; Gao, W. Wireless battery-free wearable sweat sensor powered by human motion. Sci. Adv. 2020, 6, eaay9842.

[13]

Chen, S. C.; Qian, G. C.; Ghanem, B.; Wang, Y. Q.; Shu, Z.; Zhao, X. F.; Yang, L.; Liao, X. Q.; Zheng, Y. J. Quantitative and real-time evaluation of human respiration signals with a shape-conformal wireless sensing system. Adv. Sci. 2022, 9, 2203460.

[14]

Li, S.; Zhang, Y.; Liang, X. P.; Wang, H. M.; Lu, H. J.; Zhu, M. J.; Wang, H. M.; Zhang, M. C.; Qiu, X. P.; Song, Y. F. et al. Humidity-sensitive chemoelectric flexible sensors based on metal–air redox reaction for health management. Nat. Commun. 2022, 13, 5416.

[15]

Chung, H. U.; Rwei, A. Y.; Hourlier-Fargette, A.; Xu, S.; Lee, K.; Dunne, E. C.; Xie, Z. Q.; Liu, C.; Carlini, A.; Kim, D. H. et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 2020, 26, 418–429.

[16]

Kumaravelu, D. P.; Govindasamy, K. Effect of prescribing and monitoring direct and indirect physical activity on selected health related fitness and cardio respiratory variables among obese school boys. Int. J. Physiol. Nutr. Phys. Educ. 2018, 3, 707–716.

[17]

Roca, O.; Hernández, G.; Díaz-Lobato, S.; Carratalá, J. M.; Gutiérrez, R. M.; Masclans, J. R.; Spanish Multidisciplinary Group of High Flow Supportive Therapy in Adults. Current evidence for the effectiveness of heated and humidified high flow nasal cannula supportive therapy in adult patients with respiratory failure. Crit. Care 2016, 20, 109.

[18]

Zhang, D. Z.; Xu, Z. Y.; Yang, Z. M.; Song, X. S. High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 2020, 67, 104251.

[19]

Peng, X.; Dong, K.; Ning, C.; Cheng, R. W.; Yi, J.; Zhang, Y. H.; Sheng, F. F.; Wu, Z. Y.; Wang, Z. L. All-nanofiber self-powered skin-interfaced real-time respiratory monitoring system for obstructive sleep apnea–hypopnea syndrome diagnosing. Adv. Funct. Mater. 2021, 31, 2103559.

[20]

Wang, D. Y.; Zhang, D. Z.; Li, P.; Yang, Z. M.; Mi, Q.; Yu, L. D. Electrospinning of flexible poly(vinyl alcohol)/MXene nanofiber-based humidity sensor self-powered by monolayer molybdenum diselenide piezoelectric nanogenerator. Nano-Micro Lett. 2021, 13, 57.

[21]

Dassanayaka, D. G.; Alves, T. M.; Wanasekara, N. D.; Dharmasena, I. G.; Ventura, J. Recent progresses in wearable triboelectric nanogenerators. Adv. Funct. Mater. 2022, 32, 2205438.

[22]

Li, Z.; Zheng, Q.; Wang, Z. L.; Li, Z. Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020, 2020, 8710686.

[23]

Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267–10274.

[24]

Wang, D. Y.; Zhang, D. Z.; Yang, Y.; Mi, Q.; Zhang, J. H.; Yu, L. D. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919.

[25]

Wang, D. Y.; Zhang, D. Z.; Chen, X. Y.; Zhang, H.; Tang, M. C.; Wang, J. H. Multifunctional respiration-driven triboelectric nanogenerator for self-powered detection of formaldehyde in exhaled gas and respiratory behavior. Nano Energy 2022, 102, 107711.

[26]

Zhang, D.; Xu, S. W.; Zhao, X.; Qian, W. Q.; Bowen, C. R.; Yang, Y. Wireless monitoring of small strains in intelligent robots via a joule heating effect in stretchable graphene-polymer nanocomposites. Adv. Funct. Mater. 2020, 30, 1910809.

[27]

Liu, X. B.; Liang, X. W.; Lin, Z. Q.; Lei, Z. M.; Xiong, Y. X.; Hu, Y. G.; Zhu, P. L.; Sun, R.; Wong, C. P. Highly sensitive and stretchable strain sensor based on a synergistic hybrid conductive network. ACS Appl. Mater. Interfaces 2020, 12, 42420–42429.

[28]

Peng, X.; Dong, K.; Ye, C. Y.; Jiang, Y.; Zhai, S. Y.; Cheng, R. W.; Liu, D.; Gao, X. P.; Wang, J.; Wang, Z. L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624.

[29]

Wang, D. Y.; Zhang, D. Z.; Guo, J. Y.; Hu, Y. Q.; Yang, Y.; Sun, T. H.; Zhang, H.; Liu, X. H. Multifunctional poly(vinyl alcohol)/Ag nanofibers-based triboelectric nanogenerator for self-powered MXene/tungsten oxide nanohybrid NO2 gas sensor. Nano Energy 2021, 89, 106410.

[30]

Nankali, M.; Nouri, N. M.; Navidbakhsh, M.; Malek, N. G.; Amindehghan, M. A.; Shahtoori, A. M.; Karimi, M.; Amjadi, M. Highly stretchable and sensitive strain sensors based on carbon nanotube-elastomer nanocomposites: The effect of environmental factors on strain sensing performance. J. Mater. Chem. C 2020, 8, 6185–6195.

[31]

Zhu, H. Y.; Wang, S. L.; Zhang, M. H.; Li, T. Y.; Hu, G. H.; Kong, D. S. Fully solution processed liquid metal features as highly conductive and ultrastretchable conductors. npj Flex. Electron. 2021, 5, 25.

[32]

Yu, Y. F.; Zheng, G. C.; Dai, K.; Zhai, W.; Zhou, K. K.; Jia, Y. Y.; Zheng, G. Q.; Zhang, Z. C.; Liu, C. T.; Shen, C. Y. Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity. Mater. Horiz. 2021, 8, 1037–1046.

[33]

Zhang, Y. Y.; Huang, Y.; Liu, P.; Liu, C. X.; Guo, X. H.; Zhang, Y. G. Highly stretchable strain sensor with wide linear region via hydrogen bond-assisted dual-mode cooperative conductive network for gait detection. Compos. Sci. Technol. 2020, 191, 108070.

[34]

Xia, M.; Pan, S. X.; Li, H. H.; Yi, X.; Zhan, Y.; Sun, Z. G.; Jiang, X. L.; Zhang, Y. H. Hybrid double-network hydrogel for highly stretchable, excellent sensitive, stabilized, and transparent strain sensors. J. Biomater. Sci. Polym. Ed. 2021, 32, 1548–1563.

[35]

Kim, S.; Yoo, B.; Miller, M.; Bowen, D.; Pines, D. J.; Daniels, K. M. EGaIn-silicone-based highly stretchable and flexible strain sensor for real-time two joint robotic motion monitoring. Sens. Actuators A Phys. 2022, 342, 113659.

[36]

Ning, C.; Cheng, R. W.; Jiang, Y.; Sheng, F. F.; Yi, J.; Shen, S.; Zhang, Y. H.; Peng, X.; Dong, K.; Wang, Z. L. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring. ACS Nano 2022, 16, 2811–2821.

[37]

Liu, H.; Zhang, S. M.; Li, Z. K.; Lu, T. J.; Lin, H. S.; Zhu, Y. Z.; Ahadian, S.; Emaminejad, S.; Dokmeci, M. R.; Xu, F. et al. Harnessing the wide-range strain sensitivity of bilayered PEDOT: PSS films for wearable health monitoring. Matter 2021, 4, 2886–2901.

[38]

Li, C. C.; Zhou, B. Z.; Zhou, Y. F.; Ma, J. W.; Zhou, F. L.; Chen, S. J.; Jerrams, S.; Jiang, L. Carbon nanotube coated fibrous tubes for highly stretchable strain sensors having high linearity. Nanomaterials 2022, 12, 2458.

[39]

Li, C. Y.; Liu, D.; Xu, C. Q.; Wang, Z. M.; Shu, S.; Sun, Z. R.; Tang, W.; Wang, Z. L. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 2021, 12, 2950.

[40]

Bai, H. D.; Li, S.; Barreiros, J.; Tu, Y. Q.; Pollock, C. R.; Shepherd, R. F. Stretchable distributed fiber-optic sensors. Science 2020, 370, 848–852.

[41]

Chen, X. L.; Li, X. M.; Shao, J. Y.; An, N. L.; Tian, H. M.; Wang, C.; Han, T. Y.; Wang, L.; Lu, B. H. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017, 13, 1604245.

[42]

Leber, A.; Dong, C. Q.; Chandran, R.; Das Gupta, T.; Bartolomei, N.; Sorin, F. Soft and stretchable liquid metal transmission lines as distributed probes of multimodal deformations. Nat. Electron. 2020, 3, 316–326.

[43]

Torén, K.; Schiöler, L.; Lindberg, A.; Andersson, A.; Behndig, A. F.; Bergström, G.; Blomberg, A.; Caidahl, K.; Engvall, J. E.; Eriksson, M. J. et al. The ratio FEV1/FVC and its association to respiratory symptoms—A Swedish general population study. Clin. Physiol. Funct. Imaging 2021, 41, 181–191.

[44]

Chiry, S.; Cartier, A.; Malo, J. L.; Tarlo, S. M.; Lemière, C. Comparison of peak expiratory flow variability between workers with work-exacerbated asthma and occupational asthma. Chest 2007, 132, 483–488.

[45]

Lambert, A.; Drummond, M. B.; Wei, C.; Irvin, C.; Kaminsky, D.; McCormack, M.; Wise, R. Diagnostic accuracy of FEV1/forced vital capacity ratio z scores in asthmatic patients. J. Allergy Clin. Immunol. 2015, 136, 649–653.e4.

[46]

GBD 2015 Chronic Respiratory Disease Collaborators. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet Resp. Med. 2017, 5, 691–706.

Video
12274_2023_5420_MOESM2_ESM.mp4
12274_2023_5420_MOESM3_ESM.mp4
12274_2023_5420_MOESM4_ESM.mp4
File
12274_2023_5420_MOESM1_ESM.pdf (9.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 October 2022
Revised: 18 November 2022
Accepted: 18 December 2022
Published: 08 February 2023
Issue date: September 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was supported by the National Key Research and Development Program of China (No. 2021YFA1201601) and the National Natural Science Foundation of China (No. 52192610). We would like to thank Yanshuo Sun, Chuan Ning, and Jie An. for their helpful discussions. The volunteers involved in the respiratory monitoring are also the co-authors of this manuscript. No ethical approval was required in this case.

Return