Journal Home > Volume 16 , Issue 5

High-entropy materials are mainly composed of high-entropy alloys (HEAs) and their derivates. Among them, HEAs account for a big part. As a new kind of alloy, they are now arousing great interests because of their high mechanical strength, extraordinary fracture toughness, and corrosion resistance compared with traditional alloys. These characteristics allow the use of HEAs in various fields, including mechanical manufacturing, heat-resistant, radiation-resistant, corrosion-resistant, and wear-resistant coatings, energy storage, heterocatalysis, etc. In order to promote the extensive application of HEAs, it is of significance to realize their rational design and preparation. In this paper, a systematic review focusing on the rational design and fabrication of nanosized HEAs is given. The design principles of how to match different elements in HEAs and the premise for the formation of single-phase solid solution HEAs are first illustrated. Computation methods for the prediction of formation conditions and properties of HEAs are also in discussion. Then, a detailed description and comparison of the synthesis methods of HEAs and their derivate, as well as their growing mechanism under various synthetic environments is provided. The commonly used characterization methods for the detection of HEAs, along with the typical cases of the application of HEAs in industrial materials, energy storage materials and catalytic materials are also included. Finally, the challenges and perspectives in the design and synthesis of HEAs would be proposed. We hope this review will give guidance for the future development of HEAs materials.


menu
Abstract
Full text
Outline
About this article

A review on the rational design and fabrication of nanosized high- entropy materials

Show Author's information Yuanbo Zhou1,2,§Xiaowei Shen4,§Tao Qian3,5Chenglin Yan2,5( )Jianmei Lu1( )
Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Chemistry Chemical Engineering and Materials Science Soochow University, 199 Ren’ai Road, Suzhou 215123, China
Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
School of Electrical Engineering, Nantong University, Nantong 226019, China
Light Industry Institute of Electrochemical Power Sources, Suzhou 215600, China

§ Yuanbo Zhou and Xiaowei Shen contributed equally to this work.

Abstract

High-entropy materials are mainly composed of high-entropy alloys (HEAs) and their derivates. Among them, HEAs account for a big part. As a new kind of alloy, they are now arousing great interests because of their high mechanical strength, extraordinary fracture toughness, and corrosion resistance compared with traditional alloys. These characteristics allow the use of HEAs in various fields, including mechanical manufacturing, heat-resistant, radiation-resistant, corrosion-resistant, and wear-resistant coatings, energy storage, heterocatalysis, etc. In order to promote the extensive application of HEAs, it is of significance to realize their rational design and preparation. In this paper, a systematic review focusing on the rational design and fabrication of nanosized HEAs is given. The design principles of how to match different elements in HEAs and the premise for the formation of single-phase solid solution HEAs are first illustrated. Computation methods for the prediction of formation conditions and properties of HEAs are also in discussion. Then, a detailed description and comparison of the synthesis methods of HEAs and their derivate, as well as their growing mechanism under various synthetic environments is provided. The commonly used characterization methods for the detection of HEAs, along with the typical cases of the application of HEAs in industrial materials, energy storage materials and catalytic materials are also included. Finally, the challenges and perspectives in the design and synthesis of HEAs would be proposed. We hope this review will give guidance for the future development of HEAs materials.

Keywords: characterization, application, high-entropy alloys, synthesis strategies, rational design, high-entropy alloy (HEA) derivate

References(212)

[1]

Zheng, H.; Luo, G. Y.; Zhang, A. J.; Lu, X. F.; He, L. The synthesis and catalytic applications of nanosized high-entropy alloys. ChemCatChem 2021, 13, 806–817.

[2]

Zhang, W. R.; Liaw, P. K.; Zhang, Y. Science and technology in high-entropy alloys. Sci. China Mater. 2018, 61, 2–22.

[3]

Wang, X.; Guo, W.; Fu, Y. Z. High-entropy alloys: Emerging materials for advanced functional applications. J. Mater. Chem. A 2021, 9, 663–701.

[4]

Higashino, S.; Abbott, A. P.; Miyake, M.; Hirato, T. Iron(III) chloride and acetamide eutectic for the electrodeposition of iron and iron based alloys. Electrochim. Acta 2020, 351, 136414.

[5]

Stemper, L.; Tunes, M. A.; Tosone, R.; Uggowitzer, P. J.; Pogatscher, S. On the potential of aluminum crossover alloys. Prog. Mater. Sci. 2022, 124, 100873.

[6]

Maddegalla, A.; Mukherjee, A.; Blázquez, J. A.; Azaceta, E.; Leonet, O.; Mainar, A. R.; Kovalevsky, A.; Sharon, D.; Martin, J. F.; Sotta, D. et al. AZ31 magnesium alloy foils as thin anodes for rechargeable magnesium batteries. ChemSusChem 2021, 14, 4690–4696.

[7]

Lin, H. K.; Cheng, Y. H.; Li, G. Y.; Chen, Y. C.; Bazarnik, P.; Muzy, J.; Huang, Y.; Langdon, T. G. Study on the surface modification of nanostructured Ti alloys and coarse-grained Ti alloys. Metals 2022, 12, 948.

[8]

Cao, M.; Wang, Z.; Zhang, Q. Microstructure-dependent mechanical properties of semi-solid copper alloys. J. Alloys Compd. 2017, 715, 413–420.

[9]

Bararpour, S. M.; Aval, H. J.; Jamaati, R. Effects of Zn powder on alloying during friction surfacing of Al-Mg alloy. J. Alloys Compd. 2020, 818, 152823.

[10]

Abdel-Aziz, A. B.; El-Zomrawy, A. A.; El-Sabbah, M. M. B.; Ghayad, I. M. Electrodeposition of lead and lead-tin alloy on copper using an eco-friendly methanesulfonate plating bath. J. Mater. Res. Technol. 2022, 18, 2166–2174.

[11]

Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem., Int. Ed. 2016, 55, 2753–2758.

[12]

Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.

[13]

Zhao, H.; Zhang, D.; Yuan, Y. Y.; Wu, X. K.; Li, S. X.; Li, Z. J.; Lai, J. P.; Wang, L. Rapid and large-scale synthesis of ultra-small immiscible alloy supported catalysts. Appl. Catal. B:Environ. 2022, 304, 120916.

[14]

Zhang, J. T.; Le, J. B.; Dong, Y. T.; Bu, L. Z.; Zhang, Y.; Cheng, J.; Li, L. G.; Huang, X. Q. Face-centered cubic structured RuCu hollow urchin-like nanospheres enable remarkable hydrogen evolution catalysis. Sci. China Chem. 2022, 65, 87–95.

[15]

Liu, C.; Ji, Y. C.; Tang, J. X.; Otsuka, K.; Wang, Y.; Hou, M. R.; Hao, Y. S.; Ren, S.; Luo, P.; Ma, T. Y. et al. A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength. Nat. Mater. 2022, 21, 1003–1007.

[16]

Santos, M. D.; Fukumasu, N. K.; Tschiptschin, A. P.; Lima, N. B.; Figueroa, C. A.; Weber, J. S.; Souza, R. M.; Machado, I. F. Effect of Ti/Si and Ti/TiN/Si interlayers on the structure, properties, and tribological behavior of an a-C film deposited onto a C17200 copper-beryllium alloy. Surf. Coat. Technol. 2022, 441, 128561.

[17]

Jagdheesh, R.; Hauschwitz, P.; Mužík, J.; Brajer, J.; Rostohar, D.; Jiříček, P.; Kopeček, J.; Mocek, T. Non-fluorinated superhydrophobic Al7075 aerospace alloy by ps laser processing. Appl. Surf. Sci. 2019, 493, 287–293.

[18]
Han, J. Q.; Wang, H. M.; Xu, A. J.; Niu, K. M.; Zheng, W. Y. Externally-physical-field-assisted aging precipitation in aerospace aluminum alloys: A review. Crit. Rev. Solid State Mater. Sci., https://doi.org.10.1080/10408436.2022.2080177.
[19]

Zhang, S. F.; Liu, J. Y.; Wang, L. J.; Zhang, Z. J.; Kang, J. L.; Liu, P.; Wang, W. C. Enhanced pseudocapacitive energy storage of oxides grown on nanoporous alloys by solid solution. Chem. Eng. J. 2021, 405, 126632.

[20]

Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202205923.

[21]

Yan, J. Y.; Yin, S.; Asta, M.; Ritchie, R. O.; Ding, J.; Yu, Q. Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles. Nat. Commun. 2022, 13, 2789.

[22]

Huang, X. F.; Yang, G. X.; Li, S.; Wang, H. J.; Cao, Y. H.; Peng, F.; Yu, H. Noble-metal-based high-entropy-alloy nanoparticles for electrocatalysis. J. Energy Chem. 2022, 68, 721–751.

[23]

Okejiri, F.; Yang, Z. Z.; Chen, H.; Do-Thanh, C. L.; Wang, T.; Yang, S. Z.; Dai, S. Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids. Nano Res. 2022, 15, 4792–4798.

[24]

Guo, R.; Yu, L. L.; Liu, Z. Y.; Pan, J.; Yao, Y. G.; Liu, L. Enthalpy induced phase partition toward hierarchical, nanostructured high-entropy alloys. Nano Res. 2022, 15, 4893–4901.

[25]

Wang, Y.; Yu, B.; He, M.; Zhai, Z. H.; Yin, K. B.; Kong, F. G.; Zhang, Z. H. Eutectic-derived high-entropy nanoporous nanowires for efficient and stable water-to-hydrogen conversion. Nano Res. 2022, 15, 4820–4826.

[26]

Nie, S. Y.; Wu, L.; Zhao, L. C.; Zhang, P. F. Enthalpy-change driven synthesis of high-entropy perovskite nanoparticles. Nano Res. 2022, 15, 4867–4872.

[27]

Johny, J.; Li, Y.; Kamp, M.; Prymak, O.; Liang, S. X.; Krekeler, T.; Ritter, M.; Kienle, L.; Rehbock, C.; Barcikowski, S. et al. Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano Res. 2022, 15, 4807–4819.

[28]

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

[29]
Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218.
[30]

Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823.

[31]

Xin, Y.; Li, S. H.; Qian, Y. Y.; Zhu, W. K.; Yuan, H. B.; Jiang, P. Y.; Guo, R. H.; Wang, L. B. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catal. 2020, 10, 11280–11306.

[32]

Zhang, Y. Q.; Wang, D. D.; Wang, S. Y. High-entropy alloys for electrocatalysis: Design, characterization, and applications. Small 2022, 18, 2104339.

[33]

Gao, L. B.; Song, J.; Jiao, Z. B.; Liao, W. B.; Luan, J. H.; Surjadi, J. U.; Li, J. Y.; Zhang, H. T.; Sun, D.; Liu, C. T. et al. High-entropy alloy (HEA)-coated nanolattice structures and their mechanical properties. Adv. Eng. Mater. 2018, 20, 1700625.

[34]

Yadav, S.; Zhang, Q. F.; Behera, A.; Haridas, R. S.; Agrawal, P.; Gong, J. D.; Mishra, R. S. Role of binder phase on the microstructure and mechanical properties of a mechanically alloyed and spark plasma sintered WC-FCC HEA composites. J. Alloys Compd. 2021, 877, 160265.

[35]

Zhou, S. C.; Liaw, P. K.; Xue, Y. F.; Zhang, Y. Temperature-dependent mechanical behavior of an Al0.5Cr0. 9FeNi2. 5V0. 2 high-entropy alloy. Appl. Phys. Lett. 2021, 119, 121902.

[36]

El-Atwani, O.; Li, N.; Li, M.; Devaraj, A.; Baldwin, J. K. S.; Schneider, M. M.; Sobieraj, D.; Wróbel, J. S.; Nguyen-Manh, D.; Maloy, S. A. et al. Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci. Adv. 2019, 5, eaav2002.

[37]

Chen, C.; Yuan, S. H.; Chen, J. L.; Wang, W.; Zhang, W. W.; Wei, R.; Wang, T.; Zhang, T.; Guan, S. K.; Li, F. S. A Co-free Cr-Fe-Ni-Al-Si high entropy alloy with outstanding corrosion resistance and high hardness fabricated by laser surface melting. Mater. Lett. 2022, 314, 131882.

[38]

Xin, B. B.; Zhang, A. J.; Han, J. S.; Meng, J. H. Improving mechanical properties and tribological performance of Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys via doping Si. J. Alloys Compd. 2021, 869, 159122.

[39]
Walczak, K.; Plewa, A.; Ghica, C.; Zając, W.; Trenczek-Zając, A.; Zając, M.; Toboła, J.; Molenda, J. NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide-experimental and theoretical evidence of high electrochemical performance in sodium batteries. Energy Storage Mater. 2022, 47, 500–514.
[40]

Fan, L. F.; Ji, Y. X.; Wang, G. X.; Chen, J. X.; Chen, K.; Liu, X.; Wen, Z. H. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 2022, 144, 7224–7235.

[41]

Li, H. D.; Han, Y.; Zhao, H.; Qi, W. J.; Zhang, D.; Yu, Y. D.; Cai, W. W.; Li, S. X.; Lai, J. P.; Huang, B. L. et al. Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nat. Commun. 2020, 11, 5437.

[42]

Zhan, C. H.; Xu, Y.; Bu, L. Z.; Zhu, H. Z.; Feng, Y. G.; Yang, T.; Zhang, Y.; Yang, Z. Q.; Huang, B. L.; Shao, Q. et al. Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat. Commun. 2021, 12, 6261.

[43]

Ma, Y. J.; Ma, Y.; Wang, Q. S.; Schweidler, S.; Botros, M.; Fu, T. T.; Hahn, H.; Brezesinski, T.; Breitung, B. High-entropy energy materials: Challenges and new opportunities. Energy Environ. Sci. 2021, 14, 2883–2905.

[44]

Qin, Y. C.; Wang, F. Q.; Wang, X. M.; Wang, M. W.; Zhang, W. L.; An, W. K.; Wang, X. P.; Ren, Y. L.; Zheng, X.; Lv, D. C. et al. Noble metal-based high-entropy alloys as advanced electrocatalysts for energy conversion. Rare Met. 2021, 40, 2354–2368.

[45]

Li, H. N.; Zhu, H.; Zhang, S. G.; Zhang, N.; Du, M. L.; Chai, Y. Nano high-entropy materials: Synthesis strategies and catalytic applications. Small Struct. 2020, 1, 2000033.

[46]

You, J. H.; Yao, R. Y.; Ji, W. R.; Zhao, Y.; Wang, Z. Y. Research of high entropy alloys as electrocatalyst for oxygen evolution reaction. J. Alloys Compd. 2022, 908, 164669.

[47]

Cui, Y. L. S.; Zhang, Y. Z.; Cao, Z. J.; Gu, J. N.; Du, Z. G.; Li, B.; Yang, S. B. A perspective on high-entropy two-dimensional materials. SusMat 2022, 2, 65–75.

[48]

Zhao, K. N.; Li, X.; Su, D. High-entropy alloy nanocatalysts for electrocatalysis. Acta Phys. -Chim. Sin. 2021, 37, 2009077.

[49]

Liu, H.; Syama, L.; Zhang, L. K.; Lee, C.; Liu, C. T.; Dai, Z. F.; Yan, Q. Y. High-entropy alloys and compounds for electrocatalytic energy conversion applications. SusMat 2021, 1, 482–505.

[50]

Yao, Y. G.; Dong, Q.; Brozena, A.; Luo, J.; Miao, J. W.; Chi, M. F.; Wang, C.; Kevrekidis, I. G.; Ren, Z. J.; Greeley, J. et al. High-entropy nanoparticles: Synthesis-structure–property relationships and data-driven discovery. Science 2022, 376, eabn3103.

[51]

Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.

[52]

Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.

[53]

Wang, Y.; Mi, J. X.; Wu, Z. S. Recent status and challenging perspective of high entropy oxides for chemical catalysis. Chem Catal. 2022, 2, 1624–1656.

[54]

Takeuchi, A.; Inoue, A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 2005, 46, 2817–2829.

[55]

Luan, H. W.; Zhang, X.; Ding, H. Y.; Zhang, F.; Luan, J. H.; Jiao, Z. B.; Yang, Y. C.; Bu, H. T.; Wang, R. B.; Gu, J. L. et al. High-entropy induced a glass-to-glass transition in a metallic glass. Nat. Commun. 2022, 13, 2183.

[56]

Yao, Y. G.; Liu, Z. Y.; Xie, P. F.; Huang, Z. F.; Li, T. Y.; Morris, D.; Finfrock, Z.; Zhou, J. H.; Jiao, M. L.; Gao, J. L. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 2020, 6, eaaz0510.

[57]

Cavin, J.; Ahmadiparidari, A.; Majidi, L.; Thind, A. S.; Misal, S. N.; Prajapati, A.; Hemmat, Z.; Rastegar, S.; Beukelman, A.; Singh, M. R. et al. 2D high-entropy transition metal dichalcogenides for carbon dioxide electrocatalysis. Adv. Mater. 2021, 33, 2100347.

[58]

Rao, Z. Y.; Tung, P. Y.; Xie, R. W.; Wei, Y.; Zhang, H. B.; Ferrari, A.; Klaver, T. P. C.; Körmann, F.; Sukumar, P. T.; da Silva, A. K. et al. Machine learning-enabled high-entropy alloy discovery. Science 2022, 378, 78–85.

[59]

Xiang, T.; Du, P.; Cai, Z. Y.; Li, K.; Bao, W. Z.; Yang, X. X.; Xie, G. Q. Phase-tunable equiatomic and non-equiatomic Ti-Zr-Nb-Ta high-entropy alloys with ultrahigh strength for metallic biomaterials. J. Mater. Sci. Technol. 2022, 117, 196–206.

[60]

Daryoush, S.; Mirzadeh, H.; Ataie, A. Amorphization, mechano-crystallization, and crystallization kinetics of mechanically alloyed AlFeCuZnTi high-entropy alloys. Mater. Lett. 2022, 307, 131098.

[61]

Kipkirui, N. G.; Lin, T. T.; Kiplangat, R. S.; Lee, J. W.; Chen, S. H. HiPIMS and RF magnetron sputtered Al0.5CoCrFeNi2Ti0.5 HEA thin-film coatings:Synthesis and characterization. Surf. Coat. Technol. 2022, 449, 128988.

[62]

Zhu, Z. Z.; Meng, H. M.; Ren, P. W. CoNiWReP high entropy alloy coatings prepared by pulse current electrodeposition from aqueous solution. Colloids Surf. A:Physicochem. Eng. Asp. 2022, 648, 129404.

[63]

Kumar, N.; Tiwary, C. S.; Biswas, K. Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J. Mater. Sci. 2018, 53, 13411–13423.

[64]

Katiyar, N. K.; Dhakar, S.; Parui, A.; Gakhad, P.; Singh, A. K.; Biswas, K.; Tiwary, C. S.; Sharma, S. Electrooxidation of hydrazine utilizing high-entropy alloys: Assisting the oxygen evolution reaction at the thermodynamic voltage. ACS Catal. 2021, 11, 14000–14007.

[65]

Wu, Q. F.; Wang, Z. J.; He, F.; Wang, L. L.; Luo, J.; Li, J. J.; Wang, J. C. High entropy alloys: From bulk metallic materials to nanoparticles. Metall. Mater. Trans. A 2018, 49, 4986–4990.

[66]

Liu, H.; Qin, H. Y.; Kang, J. L.; Ma, L. Y.; Chen, G. X.; Huang, Q.; Zhang, Z. J.; Liu, E. Z.; Lu, H. M.; Li, J. X. et al. A freestanding nanoporous NiCoFeMoMn high-entropy alloy as an efficient electrocatalyst for rapid water splitting. Chem. Eng. J. 2022, 435, 134898.

[67]

Yu, T. T.; Zhang, Y. Y.; Hu, Y. X.; Hu, K. L.; Lin, X.; Xie, G. Q.; Liu, X. J.; Reddy, K. M.; Ito, Y.; Qiu, H. J. Twelve-component free-standing nanoporous high-entropy alloys for multifunctional electrocatalysis. ACS Mater. Lett. 2022, 4, 181–189.

[68]

Jin, Z. Y.; Lyu, J.; Zhao, Y. L.; Li, H. L.; Lin, X.; Xie, G. Q.; Liu, X. J.; Kai, J. J.; Qiu, H. J. Rugged high-entropy alloy nanowires with in situ formed surface spinel oxide as highly stable electrocatalyst in Zn-air batteries. ACS Mater. Lett. 2020, 2, 1698–1706.

[69]

Qiu, H. J.; Fang, G.; Wen, Y. R.; Liu, P.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 2019, 7, 6499–6506.

[70]

Jin, Z. Y.; Lv, J.; Jia, H. L.; Liu, W. H.; Li, H. L.; Chen, Z. H.; Lin, X.; Xie, G. Q.; Liu, X. J.; Sun, S. H. et al. Nanoporous Al-Ni-Co-Ir-Mo high-entropy alloy for record-high water splitting activity in acidic environments. Small 2019, 15, 1904180.

[71]

Li, S. Y.; Tang, X. W.; Jia, H. L.; Li, H. L.; Xie, G. Q.; Liu, X. J.; Lin, X.; Qiu, H. J. Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. J. Catal. 2020, 383, 164–171.

[72]

Fu, S. F.; Zhu, C. Z.; Du, D.; Lin, Y. H. Enhanced electrocatalytic activities of PtCuCoNi three-dimensional nanoporous quaternary alloys for oxygen reduction and methanol oxidation reactions. ACS Appl. Mater. Interfaces 2016, 8, 6110–6116.

[73]

Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Platinum-group-metal high-entropy-alloy nanoparticles. J. Am. Chem. Soc. 2020, 142, 13833–13838.

[74]

Wu, D. S.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Gueye, I.; Seo, O.; Kim, J.; Hiroi, S.; Sakata, O. et al. On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles. Chem. Sci. 2020, 11, 12731–12736.

[75]

Zhang, D.; Zhao, H.; Wu, X. K.; Deng, Y.; Wang, Z. C.; Han, Y.; Li, H. D.; Shi, Y.; Chen, X. L.; Li, S. X. et al. Multi-site electrocatalysts boost pH-universal nitrogen reduction by high-entropy alloys. Adv. Funct. Mater. 2021, 31, 2006939.

[76]

Li, H. D.; Sun, M. Z.; Pan, Y.; Xiong, J.; Du, H. Y.; Yu, Y. D.; Feng, S. H.; Li, Z. J.; Lai, J. P.; Huang, B. L. et al. The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Appl. Catal. B:Environ. 2022, 312, 121431.

[77]

Xu, Z. Y.; Zhang, X. J.; Wang, X. D.; Fang, J. J.; Zhang, Y. F.; Liu, X. R.; Zhu, W.; Yan, Y. S.; Zhuang, Z. B. Synthesis of Ag-Ni-Fe-P multielemental nanoparticles as bifunctional oxygen reduction/evolution reaction electrocatalysts. ACS Nano 2021, 15, 7131–7138.

[78]

Yu, X. W.; Wang, B.; Wang, C.; Zhuang, C.; Yao, Y. F.; Li, Z. S.; Wu, C. P.; Feng, J. Y.; Zou, Z. G. 2D high-entropy hydrotalcites. Small 2021, 17, 2103412.

[79]

Bondesgaard, M.; Broge, N. L. N.; Mamakhel, A.; Bremholm, M.; Iversen, B. B. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater. 2019, 29, 1905933.

[80]

Broge, N. L. N.; Bondesgaard, M.; Søndergaard-Pedersen, F.; Roelsgaard, M.; Iversen, B. B. Autocatalytic formation of high-entropy alloy nanoparticles. Angew. Chem., Int. Ed. 2020, 59, 21920–21924.

[81]

Sun, Y. T.; Yu, L.; Xu, S. S.; Xie, S. C.; Jiang, L. L.; Duan, J. J.; Zhu, J. W.; Chen, S. Battery-driven N2 electrolysis enabled by high-entropy catalysts: From theoretical prediction to prototype model. Small 2022, 18, 2106358.

[82]

Gu, K. Z.; Zhu, X. Y.; Wang, D. D.; Zhang, N. N.; Huang, G.; Li, W.; Long, P.; Tian, J.; Zou, Y. Q.; Wang, Y. Y. et al. Ultrathin defective high-entropy layered double hydroxides for electrochemical water oxidation. J. Energy Chem. 2021, 60, 121–126.

[83]

Huang, K.; Zhang, B. W.; Wu, J. S.; Zhang, T. Y.; Peng, D. D.; Cao, X.; Zhang, Z.; Li, Z.; Huang, Y. Z. Exploring the impact of atomic lattice deformation on oxygen evolution reactions based on a sub-5 nm pure face-centred cubic high-entropy alloy electrocatalyst. J. Mater. Chem. A 2020, 8, 11938–11947.

[84]

Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

[85]

Chen, Y. F.; Zhan, X.; Bueno, S. L. A.; Shafei, I. H.; Ashberry, H. M.; Chatterjee, K.; Xu, L.; Tang, Y. W.; Skrabalak, S. E. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 2021, 6, 231–237.

[86]

Wang, D. D.; Chen, Z. W.; Huang, Y. C.; Li, W.; Wang, J.; Lu, Z. L.; Gu, K. Z.; Wang, T. H.; Wu, Y. J.; Chen, C. et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci. China Mater. 2021, 64, 2454–2466.

[87]

Mori, K.; Hashimoto, N.; Kamiuchi, N.; Yoshida, H.; Kobayashi, H.; Yamashita, H. Hydrogen spillover-driven synthesis of high-entropy alloy nanoparticles as a robust catalyst for CO2 hydrogenation. Nat. Commun. 2021, 12, 3884.

[88]

Yao, C. Z.; Zhang, P.; Liu, M.; Li, G. R.; Ye, J. Q.; Liu, P.; Tong, Y. X. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy. Electrochim. Acta 2008, 53, 8359–8365.

[89]

Popescu, A. M. J.; Branzoi, F.; Constantin, I.; Anastasescu, M.; Burada, M.; Mitrică, D.; Anasiei, I.; Olaru, M. T.; Constantin, V. Electrodeposition, characterization, and corrosion behavior of CoCrFeMnNi high-entropy alloy thin films. Coatings 2021, 11, 1367.

[90]

Haché, M. J. R.; Tam, J.; Erb, U.; Zou, Y. Electrodeposited nanocrystalline medium-entropy alloys—An effective strategy of producing stronger and more stable nanomaterials. J. Alloys Compd. 2022, 899, 163233.

[91]

Park, J.; Kim, H.; Kim, S. Y.; Ahn, S. H. Empirical approach for configuring high-entropy catalysts in alkaline water electrolysis. Int. J. Energy Res. 2022, 46, 9938–9947.

[92]

Aliyu, A.; Srivastava, C. Microstructure and corrosion performance of AlFeCoNiCu high entropy alloy coatings by addition of graphene oxide. Materialia 2019, 8, 100459.

[93]

Aliyu, A.; Srivastava, C. Phase constitution, surface chemistry and corrosion behavior of electrodeposited MnFeCoNiCu high entropy alloy-graphene oxide composite coatings. Surf. Coat. Technol. 2022, 429, 127943.

[94]

Aliyu, A.; Srivastava, C. Microstructure-corrosion property correlation in electrodeposited AlCrFeCoNiCu high entropy alloys-graphene oxide composite coatings. Thin Solid Films 2019, 686, 137434.

[95]

Li, H.; Sun, H.; Wang, C.; Wei, B.; Yao, C.; Tong, Y.; Ma, H. Controllable electrochemical synthesis and magnetic behaviors of Mg-Mn-Fe-Co-Ni-Gd alloy films. J. Alloys Compd. 2014, 598, 161–165.

[96]

Wang, A. L.; Wan, H. C.; Xu, H.; Tong, Y. X.; Li, G. R. Quinary PdNiCoCuFe alloy nanotube arrays as efficient electrocatalysts for methanol oxidation. Electrochim. Acta 2014, 127, 448–453.

[97]

Yoosefan, F.; Ashrafi, A.; Monir vaghefi, S. M.; Constantin, I. Synthesis of CoCrFeMnNi high entropy alloy thin films by pulse electrodeposition: Part 1: Effect of pulse electrodeposition parameters. Met. Mater. Int. 2020, 26, 1262–1269.

[98]

Yoosefan, F.; Ashrafi, A.; Monir vaghefi, S. M. Characterization of Co-Cr-Fe-Mn-Ni high-entropy alloy thin films synthesized by pulse electrodeposition: Part 2: Effect of pulse electrodeposition parameters on the wettability and corrosion resistance. Met. Mater. Int. 2021, 27, 106–117.

[99]

Pavithra, C. L. P.; Janardhana, R. K. S. K.; Reddy, K. M.; Murapaka, C.; Joardar, J.; Sarada, B. V.; Tamboli, R. R.; Hu, Y. X.; Zhang, Y. M.; Wang, X. D. et al. An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films. Sci. Rep. 2021, 11, 8836.

[100]

Yao, Y. G.; Huang, Z. H.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

[101]

Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 2650.

[102]

Percival, S. J.; Lu, P.; Lowry, D. R.; Nenoff, T. M. Electrodeposition of complex high entropy oxides via water droplet formation and conversion to crystalline alloy nanoparticles. Langmuir 2022, 38, 1923–1928.

[103]

Murakami, Y.; Maeda, Y.; Kitada, A.; Murase, K.; Fukami, K. Electrodeposition of a CoNiCu medium-entropy alloy in a water-in-oil emulsion. Electrochem. Commun. 2021, 128, 107057.

[104]

Xue, J. J.; Wu, T.; Dai, Y. Q.; Xia, Y. N. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415.

[105]

Xue, J. J.; Xie, J. W.; Liu, W. Y.; Xia, Y. N. Electrospun nanofibers: New concepts, materials, and applications. Acc. Chem. Res. 2017, 50, 1976–1987.

[106]

Zhu, H.; Zhu, Z. F.; Hao, J. C.; Sun, S. H.; Lu, S. L.; Wang, C.; Ma, P. M.; Dong, W. F.; Du, M. L. High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chem. Eng. J. 2022, 431, 133251.

[107]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

[108]

Tian, L. Y.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 645–654.

[109]

Tsukamoto, T.; Kambe, T.; Nakao, A.; Imaoka, T.; Yamamoto, K. Atom-hybridization for synthesis of polymetallic clusters. Nat. Commun. 2018, 9, 3873.

[110]

Li, H. N.; Zhu, H.; Shen, Q. K.; Huang, S. D.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Du, M. L. A novel synergistic confinement strategy for controlled synthesis of high-entropy alloy electrocatalysts. Chem. Commun. 2021, 57, 2637–2640.

[111]

Zhu, G. H.; Jiang, Y.; Yang, H. Y.; Wang, H. F.; Fang, Y.; Wang, L.; Xie, M.; Qiu, P. P.; Luo, W. Constructing structurally ordered high-entropy alloy nanoparticles on nitrogen-rich mesoporous carbon nanosheets for high-performance oxygen reduction. Adv. Mater. 2022, 34, 2110128.

[112]

Chen, P. C.; Liu, X. L.; Hedrick, J. L.; Xie, Z.; Wang, S. Z.; Lin, Q. Y.; Hersam, M. C.; Dravid, V. P.; Mirkin, C. A. Polyelemental nanoparticle libraries. Science 2016, 352, 1565–1569.

[113]

Liu, M. M.; Zhang, Z. H.; Okejiri, F.; Yang, S. Z.; Zhou, S. H.; Dai, S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via an ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 2019, 6, 1900015.

[114]

Xie, P. F.; Yao, Y. G.; Huang, Z. N.; Liu, Z. Y.; Zhang, J. L.; Li, T. Y.; Wang, G. F.; Shahbazian-Yassar, R.; Hu, L. B.; Wang, C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 2019, 10, 4011.

[115]

Xu, X.; Du, Y. K.; Wang, C. H.; Guo, Y.; Zou, J. W.; Zhou, K.; Zeng, Z.; Liu, Y. Y.; Li, L. Q. High-entropy alloy nanoparticles on aligned electronspun carbon nanofibers for supercapacitors. J. Alloys Compd. 2020, 822, 153642.

[116]

Yao, Y. G.; Huang, Z. N.; Li, T. Y.; Wang, H.; Liu, Y. F.; Stein, H. S.; Mao, Y. M.; Gao, J. L.; Jiao, M. L.; Dong, Q. et al. High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proc. Natl. Acad. Sci. USA 2020, 117, 6316–6322.

[117]

Yao, Y. G.; Huang, Z. N.; Hughes, L. A.; Gao, J. L.; Li, T. Y.; Morris, D.; Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z. et al. Extreme mixing in nanoscale transition metal alloys. Matter 2021, 4, 2340–2353.

[118]

Shi, W. H.; Liu, H. W.; Li, Z. Z.; Li, C. H.; Zhou, J. H.; Yuan, Y. F.; Jiang, F.; Fu, K.; Yao, Y. G. High-entropy alloy stabilized and activated Pt clusters for highly efficient electrocatalysis. SusMat 2022, 2, 186–196.

[119]

Dong, Q.; Hong, M.; Gao, J. L.; Li, T. Y.; Cui, M. J.; Li, S. K.; Qiao, H. Y.; Brozena, A. H.; Yao, Y. G.; Wang, X. Z. et al. Rapid synthesis of high-entropy oxide microparticles. Small 2022, 18, 2104761.

[120]

Li, T. Y.; Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Liu, Z. Y.; Yang, M. H.; Gao, J. L.; Zeng, K. Z.; Brozena, A. H.; Pastel, G. et al. Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nat. Catal. 2021, 4, 62–70.

[121]

Li, T. Y.; Yao, Y. G.; Ko, B. H.; Huang, Z. N.; Dong, Q.; Gao, J. L.; Chen, W.; Li, J. G.; Li, S. K.; Wang, X. Z.; Shahbazian-Yassar, R.; Jiao, F.; Hu, L. B. Carbon-supported high-entropy oxide nanoparticles as stable electrocatalysts for oxygen reduction reactions. Adv. Funct. Mater. 2021, 31, 2010561.

[122]

Cui, M. J.; Yang, C. P.; Li, B. Y.; Dong, Q.; Wu, M. L.; Hwang, S.; Xie, H.; Wang, X. Z.; Wang, G. F.; Hu, L. B. High-entropy metal sulfide nanoparticles promise high-performance oxygen evolution reaction. Adv. Energy Mater. 2021, 11, 2002887.

[123]

Qiao, H. Y.; Wang, X. Z.; Dong, Q.; Zheng, H. K.; Chen, G.; Hong, M.; Yang, C. P.; Wu, M. L.; He, K.; Hu, L. B. A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy 2021, 86, 106029.

[124]

Qiao, Y.; Chen, C. J.; Liu, Y.; Liu, Y. F.; Dong, Q.; Yao, Y. G.; Wang, X. Z.; Shao, Y. Y.; Wang, C.; Hu, L. B. Continuous fly-through high-temperature synthesis of nanocatalysts. Nano Lett. 2021, 21, 4517–4523.

[125]

Song, J. Y.; Kim, C.; Kim, M.; Cho, K. M.; Gereige, I.; Jung, W. B.; Jeong, H.; Jung, H. T. Generation of high-density nanoparticles in the carbothermal shock method. Sci. Adv. 2021, 7, eabk2984.

[126]

Zhong, G.; Xu, S. M.; Dong, Q.; Wang, X. Z.; Hu, L. B. Rapid, universal surface engineering of carbon materials via microwave-induced carbothermal shock. Adv. Funct. Mater. 2021, 31, 2010968.

[127]

Li, T. Y.; Dong, Q.; Huang, Z. N.; Wu, L. P.; Yao, Y. G.; Gao, J. L.; Wang, X. Z.; Zhang, H. C.; Wang, D. W.; Li, T. et al. Interface engineering between multi-elemental alloy nanoparticles and a carbon support toward stable catalysts. Adv. Mater. 2022, 34, 2106436.

[128]

Wang, X. Z.; Huang, Z. N.; Yao, Y. G.; Qiao, H. Y.; Zhong, G.; Pei, Y.; Zheng, C. L.; Kline, D.; Xia, Q. Q.; Lin, Z. W. et al. Continuous 2000 K droplet-to-particle synthesis. Mater. Today 2020, 35, 106–114.

[129]

Yang, Y.; Song, B. A.; Ke, X.; Xu, F. Y.; Bozhilov, K. N.; Hu, L. B.; Shahbazian-Yassar, R.; Zachariah, M. R. Aerosol synthesis of high entropy alloy nanoparticles. Langmuir 2020, 36, 1985–1992.

[130]

Gao, S. J.; Hao, S. Y.; Huang, Z. N.; Yuan, Y. F.; Han, S.; Lei, L. C.; Zhang, X. W.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016.

[131]

Waag, F.; Li, Y.; Ziefuß, A. R.; Bertin, E.; Kamp, M.; Duppel, V.; Marzun, G.; Kienle, L.; Barcikowski, S.; Gökce, B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019, 9, 18547–18558.

[132]

Wang, B.; Wang, C.; Yu, X. W.; Cao, Y.; Gao, L. F.; Wu, C. P.; Yao, Y. F.; Lin, Z. Q.; Zou, Z. G. General synthesis of high-entropy alloy and ceramic nanoparticles in nanoseconds. Nat. Synth. 2022, 1, 138–146.

[133]

Veronesi, P.; Rosa, R.; Colombini, E.; Leonelli, C. Microwave-assisted preparation of high entropy alloys. Technologies 2015, 3, 182–197.

[134]

Veronesi, P.; Colombini, E.; Rosa, R.; Leonelli, C.; Rosi, F. Microwave assisted synthesis of Si-modified Mn25FexNi25Cu(50−x) high entropy alloys. Mater. Lett. 2016, 162, 277–280.

[135]

Lan, L. J.; Pu, T. J.; Gu, Y. Y.; Zhu, C. Y.; Zhu, H. G. Microwave synthesis of AlFeCuCrNi/TiB2 high-entropy alloy matrix composites. MATEC Web Conf. 2018, 238, 02004.

[136]

Qiao, H. Y.; Saray, M. T.; Wang, X. Z.; Xu, S. M.; Chen, G.; Huang, Z. N.; Chen, C. J.; Zhong, G.; Dong, Q.; Hong, M. et al. Scalable synthesis of high entropy alloy nanoparticles by microwave heating. ACS Nano 2021, 15, 14928–14937.

[137]

Feng, H.; Li, H. F.; Liu, X. Y.; Huang, Y. M.; Pan, Q.; Peng, R.; Du, R. Y.; Zheng, X. X.; Yin, Z. Y.; Li, S. Q. et al. Porphyrin-based Ti-MOFs conferred with single-atom Pt for enhanced photocatalytic hydrogen evolution and NO removal. Chem. Eng. J. 2022, 428, 132045.

[138]

Ling, L. L.; Yang, W. J.; Yan, P.; Wang, M.; Jiang, H. L. Light-assisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity. Angew. Chem., Int. Ed. 2022, 61, e202116396.

[139]

Zhang, Y.; Dong, L. Z.; Li, S.; Huang, X.; Chang, J. N.; Wang, J. H.; Zhou, J.; Li, S. L.; Lan, Y. Q. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 2021, 12, 6390.

[140]

Yi, J. D.; Si, D. H.; Xie, R. K.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 17108–17114.

[141]

Xu, W.; Chen, H.; Jie, K. C.; Yang, Z. Z.; Li, T. T.; Dai, S. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation. Angew. Chem., Int. Ed. 2019, 58, 5018–5022.

[142]

Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Bai, X. Y.; Shi, R. F.; Mu, T. C. Ambient fast, large-scale synthesis of entropy-stabilized metal-organic framework nanosheets for electrocatalytic oxygen evolution. J. Mater. Chem. A 2019, 7, 26238–26242.

[143]
Wang, H. J.; Wu, X. D.; Liu, G. Y.; Wu, S. Y.; Xu, R. Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano Res. , in press,https://doi.org.10.1007/s12274-022-4199-4.
[144]

Tong, M. Y.; Liu, S. W.; Zhang, X.; Wu, T. X.; Zhang, H. M.; Wang, G. Z.; Zhang, Y. X.; Zhu, X. G.; Zhao, H. J. Two-dimensional CoNi nanoparticles@S, N-doped carbon composites derived from S, N-containing Co/Ni MOFs for high performance supercapacitors. J. Mater. Chem. A 2017, 5, 9873–9881.

[145]

Song, X. W.; Zhang, S. W.; Zhong, H. H.; Gao, Y.; Estudillo-Wong, L. A.; Alonso-Vante, N.; Shu, X.; Feng, Y. J. FeCo nanoalloys embedded in nitrogen-doped carbon nanosheets/bamboo-like carbon nanotubes for the oxygen reduction reaction. Inorg. Chem. Front. 2021, 8, 109–121.

[146]
Ma, J. C.; Lu, B. Y.; Wang, S.; He, W. X.; Bai, X. J.; Wang, T. Q.; Zhang, X. M.; Li, Y. N.; Zhang, L. Y.; Chen, J. Y. et al. MOF-derived CuCoNi trimetallic hybrids as efficient oxygen evolution reaction electrocatalysts. New J. Chem. 2020, 44, 2459–2464.
[147]

Wang, S. Q.; Huo, W. Y.; Fang, F.; Xie, Z. H.; Shang, J. K.; Jiang, J. Q. High entropy alloy/C nanoparticles derived from polymetallic MOF as promising electrocatalysts for alkaline oxygen evolution reaction. Chem. Eng. J. 2022, 429, 132410.

[148]

Hu, J.; Cao, L. J.; Wang, Z. Y.; Liu, J. L.; Zhang, J. J.; Cao, Y. L.; Lu, Z. G.; Cheng, H. Hollow high-entropy metal organic framework derived nanocomposite as efficient electrocatalyst for oxygen reduction reaction. Compos. Commun. 2021, 27, 100866.

[149]

Wang, Z. C.; Zhang, X. Y.; Wu, X. K.; Pan, Y.; Li, H. D.; Han, Y.; Xu, G. R.; Chi, J. Q.; Lai, J. P.; Wang, L. High-entropy phosphate/C hybrid nanosheets for efficient acidic hydrogen evolution reaction. Chem. Eng. J. 2022, 437, 135375.

[150]

Bi, Z. X.; Guo, R. T.; Hu, X.; Wang, J.; Chen, X.; Pan, W. G. Research progress on photocatalytic reduction of CO2 based on LDH materials. Nanoscale 2022, 14, 3367–3386.

[151]

Hao, M. J.; Gao, P.; Yang, D.; Chen, X. J.; Xiao, F.; Yang, S. X. Highly efficient adsorption behavior and mechanism of urea-Fe3O4@LDH for triphenyl phosphate. Environ. Pollut. 2020, 267, 114142.

[152]

Su, Y.; Qiu, S. H.; Yang, D. P.; Liu, S.; Zhao, H. C.; Wang, L. P.; Xue, Q. J. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH. J. Hazard. Mater. 2020, 391, 122215.

[153]

Dong, X. A.; Cui, Z. H.; Sun, Y. J.; Dong, F. Humidity-independent photocatalytic toluene mineralization benefits from the utilization of edge hydroxyls in layered double hydroxides (LDHs): A combined operando and theoretical investigation. ACS Catal. 2021, 11, 8132–8139.

[154]

Kim, M.; Oh, I.; Choi, H.; Jang, W.; Song, J.; Kim, C. S.; Yoo, J. W.; Cho, S. A solution-based route to compositionally complex metal oxide structures using high-entropy layered double hydroxides. Cell Rep. Phys. Sci. 2022, 3, 100702.

[155]

Li, M. Z.; Xi, X. Y.; Wang, H.; Lyu, X. Y.; Li, Z. C.; Zhu, R.; Ren, X. M.; Yang, D.; Dong, A. G. A universal, green, and self-reliant electrolytic approach to high-entropy layered (oxy)hydroxide nanosheets for efficient electrocatalytic water oxidation. J. Colloid Interface Sci. 2022, 617, 500–510.

[156]

Zhou, C.; Zhao, X. H.; Xiong, Y. S.; Tang, Y. H.; Ma, X. T.; Tao, Q.; Sun, C. M.; Xu, W. L. A review of etching methods of MXene and applications of MXene conductive hydrogels. Eur. Polym. J. 2022, 167, 111063.

[157]

Li, K. L.; Li, J. P.; Zhu, Q. Z.; Xu, B. Three-dimensional MXenes for supercapacitors: A review. Small Methods 2022, 6, 2101537.

[158]

Devaraj, M.; Rajendran, S.; Hoang, T. K. A.; Soto-Moscoso, M. A review on MXene and its nanocomposites for the detection of toxic inorganic gases. Chemosphere 2022, 302, 134933.

[159]

Ibrahim, Y.; Meslam, M.; Eid, K.; Salah, B.; Abdullah, A. M.; Ozoemena, K. I.; Elzatahry, A.; Sharaf, M. A.; Sillanpää, M. A review of MXenes as emergent materials for dye removal from wastewater. Sep. Purif. Technol. 2022, 282, 120083.

[160]

Du, Z. G.; Wu, C.; Chen, Y. C.; Cao, Z. J.; Hu, R. M.; Zhang, Y. Z.; Gu, J. N.; Cui, Y. L. S.; Chen, H.; Shi, Y. Z. et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 2021, 33, 2101473.

[161]

Du, Z. G.; Wu, C.; Chen, Y. C.; Zhu, Q.; Cui, Y. L. S.; Wang, H. Y.; Zhang, Y. Z.; Chen, X.; Shang, J. X.; Li, B. et al. High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 2022, 12, 2103228.

[162]

Nemani, S. K.; Zhang, B. W.; Wyatt, B. C.; Hood, Z. D.; Manna, S.; Khaledialidusti, R.; Hong, W. C.; Sternberg, M. G.; Sankaranarayanan, S. K. R. S.; Anasori, B. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 2021, 15, 12815–12825.

[163]

Zhou, J.; Tao, Q. Z.; Ahmed, B.; Palisaitis, J.; Persson, I.; Halim, J.; Barsoum, M. W.; Persson, P. O. Å.; Rosen, J. High-entropy laminate metal carbide (MAX phase) and its two-dimensional derivative MXene. Chem. Mater. 2022, 34, 2098–2106.

[164]

Etman, A. S.; Zhou, J.; Rosen, J. Ti1.1V0.7CrxNb1.0Ta0.6C3Tz high-entropy MXene freestanding films for charge storage applications. Electrochem. Commun. 2022, 137, 107264.

[165]

Bao, W. C.; Wang, X. G.; Ding, H. J.; Lu, P.; Zhu, C. X.; Zhang, G. J.; Xu, F. F. High-entropy M2AlC-MC (M = Ti, Zr, Hf, Nb, Ta) composite: Synthesis and microstructures. Scr. Mater. 2020, 183, 33–38.

[166]

Ma, W. S.; Wang, M.; Yi, Q. J.; Huang, D. J.; Dang, J.; Lv, Z. P.; Lv, X. W.; Zhang, S. F. A new Ti2V0.9Cr0.1C2Tx MXene with ultrahigh gravimetric capacitance. Nano Energy 2022, 96, 107129.

[167]

Jin, T.; Sang, X. H.; Unocic, R. R.; Kinch, R. T.; Liu, X. F.; Hu, J.; Liu, H. L.; Dai, S. Mechanochemical-assisted synthesis of high-entropy metal nitride via a soft urea strategy. Adv. Mater. 2018, 30, 1707512.

[168]

Xu, Y.; Li, G. D.; Li, G.; Gao, F. Y.; Xia, Y. Effect of bias voltage on the growth of super-hard (AlCrTiVZr)N high-entropy alloy nitride films synthesized by high power impulse magnetron sputtering. Appl. Surf. Sci. 2021, 564, 150417.

[169]

Chen, B.; Yang, X.; Zeng, X. L.; Huang, Z. L.; Xiao, J. R.; Wang, J.; Zhan, G. W. Multicomponent metal oxides derived from Mn-BTC anchoring with metal acetylacetonate complexes as excellent catalysts for VOCs and CO oxidation. Chem. Eng. J. 2020, 397, 125424.

[170]

Nguyen, T. X.; Liao, Y. C.; Lin, C. C.; Su, Y. H.; Ting, J. M. Advanced high entropy perovskite oxide electrocatalyst for oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2101632.

[171]

Okejiri, F.; Zhang, Z. H.; Liu, J. X.; Liu, M. M.; Yang, S. Z.; Dai, S. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method. ChemSusChem 2020, 13, 111–115.

[172]

Patel, R. K.; Ojha, S. K.; Kumar, S.; Saha, A.; Mandal, P.; Freeland, J. W.; Middey, S. Epitaxial stabilization of ultra thin films of high entropy perovskite. Appl. Phys. Lett. 2020, 116, 071601.

[173]

Zhou, S. Y.; Pu, Y. P.; Zhang, X. Q.; Shi, Y.; Gao, Z. Y.; Feng, Y.; Shen, G. D.; Wang, X. Y.; Wang, D. W. High energy density, temperature stable lead-free ceramics by introducing high entropy perovskite oxide. Chem. Eng. J. 2022, 427, 131684.

[174]

Jiang, S. C.; Hu, T.; Gild, J.; Zhou, N. X.; Nie, J. Y.; Qin, M. D.; Harrington, T.; Vecchio, K.; Luo, J. A new class of high-entropy perovskite oxides. Scr. Mater. 2018, 142, 116–120.

[175]

Tang, L. N.; Yang, Y. L.; Guo, H. Q.; Wang, Y.; Wang, M. J.; Liu, Z. Q.; Yang, G. M.; Fu, X. Z.; Luo, Y.; Jiang, C. X. et al. High configuration entropy activated lattice oxygen for O2 formation on perovskite electrocatalyst. Adv. Funct. Mater. 2022, 32, 2112157.

[176]

Sun, Z.; Zhao, Y. J.; Sun, C.; Ni, Q.; Wang, C. Z.; Jin, H. B. High entropy spinel-structure oxide for electrochemical application. Chem. Eng. J. 2022, 431, 133448.

[177]

Huang, C. Y.; Huang, C. W.; Wu, M. C.; Patra, J.; Nguyen, T. X.; Chang, M. T.; Clemens, O.; Ting, J. M.; Li, J.; Chang, J. K. et al. Atomic-scale investigation of lithiation/delithiation mechanism in high-entropy spinel oxide with superior electrochemical performance. Chem. Eng. J. 2021, 420, 129838.

[178]

Wang, D.; Jiang, S. D.; Duan, C. Q.; Mao, J.; Dong, Y.; Dong, K. Z.; Wang, Z. Y.; Luo, S. H.; Liu, Y. G.; Qi, X. W. Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. J. Alloys Compd. 2020, 844, 156158.

[179]

Dąbrowa, J.; Stygar, M.; Mikuła, A.; Knapik, A.; Mroczka, K.; Tejchman, W.; Danielewski, M.; Martin, M. Synthesis and microstructure of the (Co, Cr, Fe, Mn, Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2018, 216, 32–36.

[180]

Nguyen, T. X.; Patra, J.; Chang, J. K.; Ting, J. M. High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance. J. Mater. Chem. A 2020, 8, 18963–18973.

[181]

Wang, D. D.; Liu, Z. J.; Du, S. Q.; Zhang, Y. Q.; Li, H.; Xiao, Z. H.; Chen, W.; Chen, R.; Wang, Y. Y.; Zou, Y. Q. et al. Low-temperature synthesis of small-sized high-entropy oxides for water oxidation. J. Mater. Chem. A 2019, 7, 24211–24216.

[182]

Zhang, Y.; Lu, T.; Ye, Y. K.; Dai, W. J.; Zhu, Y. A.; Pan, Y. Stabilizing oxygen vacancy in entropy-engineered CoFe2O4-type catalysts for co-prosperity of efficiency and stability in an oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 32548–32555.

[183]

Djenadic, R.; Sarkar, A.; Clemens, O.; Loho, C.; Botros, M.; Chakravadhanula, V. S. K.; Kübel, C.; Bhattacharya, S. S.; Gandhi, A. S.; Hahn, H. Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 2017, 5, 102–109.

[184]

Nguyen, T. X.; Su, Y. H.; Lin, C. C.; Ting, J. M. Self-reconstruction of sulfate-containing high entropy sulfide for exceptionally high-performance oxygen evolution reaction electrocatalyst. Adv. Funct. Mater. 2021, 31, 2106229.

[185]

Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q. S.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S. et al. High-entropy sulfides as electrode materials for Li-ion batteries. Adv. Energy Mater. 2022, 12, 2103090.

[186]

McCormick, C. R.; Schaak, R. E. Simultaneous multication exchange pathway to high-entropy metal sulfide nanoparticles. J. Am. Chem. Soc. 2021, 143, 1017–1023.

[187]

Zhao, X. H.; Xue, Z. M.; Chen, W. J.; Wang, Y. Q.; Mu, T. C. Eutectic synthesis of high-entropy metal phosphides for electrocatalytic water splitting. ChemSusChem 2020, 13, 2038–2042.

[188]

Wang, R.; Huang, J. Z.; Zhang, X. H.; Han, J. C.; Zhang, Z. H.; Gao, T. L.; Xu, L. L.; Liu, S. W.; Xu, P.; Song, B. Two-dimensional high-entropy metal phosphorus trichalcogenides for enhanced hydrogen evolution reaction. ACS Nano 2022, 16, 3593–3603.

[189]

Wang, G.; Qin, J.; Feng, Y. Y.; Feng, B. X.; Yang, S. J.; Wang, Z.; Zhao, Y. X.; Wei, J. Sol-gel synthesis of spherical mesoporous high-entropy oxides. ACS Appl. Mater. Interfaces 2020, 12, 45155–45164.

[190]

Tao, L.; Sun, M. Z.; Zhou, Y.; Luo, M. C.; Lv, F.; Li, M. G.; Zhang, Q. H.; Gu, L.; Huang, B. L.; Guo, S. J. A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 2022, 144, 10582–10590.

[191]

Lei, Y. T.; Zhang, L. L.; Xu, W. J.; Xiong, C. L.; Chen, W. X.; Xiang, X.; Zhang, B.; Shang, H. S. Carbon-supported high-entropy Co-Zn-Cd-Cu-Mn sulfide nanoarrays promise high-performance overall water splitting. Nano Res. 2022, 15, 6054–6061.

[192]

Han, G. H.; Li, M. G.; Liu, H.; Zhang, W. Y.; He, L.; Tian, F. Y.; Liu, Y. Q.; Yu, Y. S.; Yang, W. W.; Guo, S. J. Short-range diffusion enables general synthesis of medium-entropy alloy aerogels. Adv. Mater. 2022, 34, 2202943.

[193]

Mushiana, T.; Khan, M.; Abdullah, M. I.; Zhang, N.; Ma, M. M. Facile sol-gel preparation of high-entropy multielemental electrocatalysts for efficient oxidation of methanol and urea. Nano Res. 2022, 15, 5014–5023.

[194]

Ma, J. M.; Xing, F. L.; Nakaya, Y.; Shimizu, K. I.; Furukawa, S. Nickel-based high-entropy intermetallic as a highly active and selective catalyst for acetylene semihydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202200889.

[195]

Deng, J. J.; Zhang, Q. Z.; Lv, X. X.; Zhang, D.; Xu, H.; Ma, D. L.; Zhong, J. Understanding photoelectrochemical water oxidation with X-ray absorption spectroscopy. ACS Energy Lett. 2020, 5, 975–993.

[196]
Chen, H. Q.; Zou, L.; Wei, D. Y.; Zheng, L. L.; Wu, Y. F.; Zhang, H.; Li, J. F. In situ studies of energy-related electrochemical reactions using Raman and X-ray absorption spectroscopy. Chin. J. Catal. 2022, 43, 33–46.
[197]

Zhao, S. T.; Li, Z. Z. High entropy alloys for extreme load-bearing applications. Mater. Lab 2022, 1, 220035.

[198]

Xu, Z. Q.; Ma, Z. L.; Tan, Y.; Cheng, X. W. Designing TiVNbTaSi refractory high-entropy alloys with ambient tensile ductility. Scr. Mater. 2022, 206, 114230.

[199]

Shi, T.; Lei, P. H.; Yan, X.; Li, J.; Zhou, Y. D.; Wang, Y. P.; Su, Z. X.; Dou, Y. K.; He, X. F.; Yun, D. et al. Current development of body-centered cubic high-entropy alloys for nuclear applications. Tungsten 2021, 3, 197–217.

[200]

Xiao, L. L.; Zheng, Z. Q.; Huang, P.; Wang, F. Superior anticorrosion performance of crystal-amorphous FeMnCoCrNi high-entropy alloy. Scr. Mater. 2022, 210, 114454.

[201]

Wang, Y.; Jin, J. S.; Zhang, M.; Wang, X. Y.; Gong, P.; Zhang, J. C.; Liu, J. C. Effect of the grain size on the corrosion behavior of CoCrFeMnNi HEAs in a 0. 5 M H2SO4 solution. J. Alloys Compd. 2021, 858, 157712.

[202]

Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q. S.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400.

[203]

Zhao, C. L.; Ding, F. X.; Lu, Y. X.; Chen, L. Q.; Hu, Y. S. High-entropy layered oxide cathodes for sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 264–269.

[204]

Xiao, B.; Wu, G.; Wang, T. D.; Wei, Z. G.; Sui, Y. W.; Shen, B. L.; Qi, J. Q.; Wei, F. X.; Zheng, J. C. High-entropy oxides as advanced anode materials for long-life lithium-ion batteries. Nano Energy 2022, 95, 106962.

[205]

Ma, Y. J.; Ma, Y.; Dreyer, S. L.; Wang, Q. S.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B. et al. High-entropy metal-organic frameworks for highly reversible sodium storage. Adv. Mater. 2021, 33, 2101342.

[206]

Yang, B. B.; Zhang, Y.; Pan, H.; Si, W. L.; Zhang, Q. H.; Shen, Z. H.; Yu, Y.; Lan, S.; Meng, F. Q.; Liu, Y. Q. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 2022, 21, 1074–1080.

[207]

Jiang, W.; Wang, T.; Chen, H.; Suo, X.; Liang, J. Y.; Zhu, W. S.; Li, H. M.; Dai, S. Room temperature synthesis of high-entropy Prussian blue analogues. Nano Energy 2021, 79, 105464.

[208]

Zhang, L. J.; Cai, W. W.; Bao, N. Z.; Yang, H. Implanting an electron donor to enlarge the d-p hybridization of high-entropy (oxy)hydroxide: A novel design to boost oxygen evolution. Adv. Mater. 2022, 34, 2110511.

[209]

Yu, Y. N.; Xia, F. J.; Wang, C. J.; Wu, J. S.; Fu, X. B.; Ma, D. S.; Lin, B. C.; Wang, J. A.; Yue, Q.; Kang, Y. J. High-entropy alloy nanoparticles as a promising electrocatalyst to enhance activity and durability for oxygen reduction. Nano Res. 2022, 15, 7868–7876.

[210]

Chen, Y.; Shang, H. J.; Ren, Y. Q.; Yue, Y. H.; Li, H. X.; Bian, Z. F. Systematic assessment of precious metal recovery to improve environmental and resource protection. ACS EST Eng. 2022, 2, 1039–1052.

[211]

Cassayre, L.; Guzhov, B.; Zielinski, M.; Biscans, B. Chemical processes for the recovery of valuable metals from spent nickel metal hydride batteries: A review. Renew. Sust. Energy Rev. 2022, 170, 112983.

[212]

Chen, Y.; Xu, M. J.; Wen, J. Y.; Wan, Y.; Zhao, Q. F.; Cao, X.; Ding, Y.; Wang, Z. L.; Li, H. X.; Bian, Z. F. Selective recovery of precious metals through photocatalysis. Nat. Sustain. 2021, 4, 618–626.

Publication history
Copyright
Acknowledgements

Publication history

Received: 05 October 2022
Revised: 28 November 2022
Accepted: 18 December 2022
Published: 27 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21703149, 51872193, 21938006, and 5192500409), the National Key Research & Development Program of China (No. 2020YFC1808401), Cutting-Edge Technology Basic Research Project of Jiangsu (No. BK20202012), and the project supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Return