Journal Home > Volume 16 , Issue 5

The conversion from syngas derived from non-petroleum recourses to liquid fuels and chemicals via Fischer–Tropsch synthesis (FTS) is regarded as an alternative and potential route. Developing catalyst with controllable particle size and clarifying size effect are of significance to promote the process. Herein, we engineered carbon-encapsulation structure to restrict particle growth but avoid strong metal–support interactions. The prepared carbon-encapsulated nanoparticles (Fe@C) showed a superior catalytic activity compared with conventional carbon-supported nanoparticles (Fe/C). By tuning particle size from 3.0 to 9.1 nm, a volcano-like trend of iron time yield (FTY) peaked at 2659 μmol·gFe−1·s−1 is obtained with an optimum particle size of 5.3 nm. According to temperature-programmed reduction and desorption results, a linear relationship between apparent turnover frequency and CO dissociation capacity was established. The enhanced CO dissociative adsorption along with weakened H2 activation on larger nanoparticles resulted in higher C5+ selectivity. This study provides a strategy to synthesize carbon supported metal catalysts with controllable particle size and insight into size effect on Fe-based catalytic FTS.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer–Trposch synthesis

Show Author's information Xiaoxue Han1Jing Lv1Shouying Huang1,3( )Qiao Zhao1,2Yue Wang1,3Zhenhua Li1Xinbin Ma1,3( )
Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
Zhejiang Institute of Tianjin University, Ningbo 315201, China
Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China

Abstract

The conversion from syngas derived from non-petroleum recourses to liquid fuels and chemicals via Fischer–Tropsch synthesis (FTS) is regarded as an alternative and potential route. Developing catalyst with controllable particle size and clarifying size effect are of significance to promote the process. Herein, we engineered carbon-encapsulation structure to restrict particle growth but avoid strong metal–support interactions. The prepared carbon-encapsulated nanoparticles (Fe@C) showed a superior catalytic activity compared with conventional carbon-supported nanoparticles (Fe/C). By tuning particle size from 3.0 to 9.1 nm, a volcano-like trend of iron time yield (FTY) peaked at 2659 μmol·gFe−1·s−1 is obtained with an optimum particle size of 5.3 nm. According to temperature-programmed reduction and desorption results, a linear relationship between apparent turnover frequency and CO dissociation capacity was established. The enhanced CO dissociative adsorption along with weakened H2 activation on larger nanoparticles resulted in higher C5+ selectivity. This study provides a strategy to synthesize carbon supported metal catalysts with controllable particle size and insight into size effect on Fe-based catalytic FTS.

Keywords: size effect, iron-based catalyst, carbon-encapsulation, Fischer–Tropsch synthesis

References(48)

[1]

Zhai, P.; Li, Y. W.; Wang, M.; Liu, J. J.; Cao, Z.; Zhang, J.; Xu, Y.; Liu, X. W.; Li, Y. W.; Zhu, Q. J. et al. Development of direct conversion of syngas to unsaturated hydrocarbons based on Fischer–Tropsch route. Chem 2021, 7, 3027–3051.

[2]

Fang, W.; Wang, C. T.; Liu, Z. Q.; Wang, L.; Liu, L.; Li, H. J.; Xu, S. D.; Zheng, A. M.; Qin, X. D.; Liu, L. J. et al. Physical mixing of a catalyst and a hydrophobic polymer promotes CO hydrogenation through dehydration. Science 2022, 377, 406–410.

[3]

Bao, J.; Yang, G. H.; Yoneyama, Y.; Tsubaki, N. Significant advances in C1 catalysis: Highly efficient catalysts and catalytic reactions. ACS Catal. 2019, 9, 3026–3053.

[4]

Liu, J. H.; Song, Y. K.; Guo, X. M.; Song, C. S.; Guo, X. W. Recent advances in application of iron-based catalysts for COx hydrogenation to value-added hydrocarbons. Chin. J. Catal. 2022, 43, 731–754.

[5]

Galvis, H. M. T.; de Jong, K. P. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catal. 2013, 3, 2130–2149.

[6]

Chen, W. Y.; Ji, J.; Feng, X.; Duan, X. Z.; Qian, G.; Li, P.; Zhou, X. G.; Chen, D.; Yuan, W. K. Mechanistic insight into size-dependent activity and durability in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. J. Am. Chem. Soc. 2014, 136, 16736–16739.

[7]

Chen, W.; Lin, T. J.; Dai, Y. Y.; An, Y. L.; Yu, F.; Zhong, L. S.; Li, S. G.; Sun, Y. H. Recent advances in the investigation of nanoeffects of Fischer–Tropsch catalysts. Catal. Today 2018, 311, 8–22.

[8]

Luo, Q. X.; Guo, L. P.; Yao, S. Y.; Bao, J.; Liu, Z. T.; Liu, Z. W. Cobalt nanoparticles confined in carbon matrix for probing the size dependence in Fischer–Tropsch synthesis. J. Catal. 2019, 369, 143–156.

[9]

Van Santen, R. A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 2009, 40, 57–66.

[10]

Park, J. Y.; Lee, Y. J.; Khanna, P. K.; Jun, K. W.; Bae, J. W.; Kim, Y. H. Alumina-supported iron oxide nanoparticles as Fischer–Tropsch catalysts: Effect of particle size of iron oxide. J. Mol. Catal. A Chem. 2010, 323, 84–90.

[11]

Sun, Z. K.; Sun, B.; Qiao, M. H.; Wei, J.; Yue, Q.; Wang, C.; Deng, Y. H.; Kaliaguine, S.; Zhao, D. Y. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer–Tropsch synthesis. J. Am. Chem. Soc. 2012, 134, 17653–17660.

[12]

Iablokov, V.; Xiang, Y. Z.; Meffre, A.; Fazzini, P. F.; Chaudret, B.; Kruse, N. Size-dependent activity and selectivity of Fe/MCF-17 in the catalytic hydrogenation of carbon monoxide using Fe(0) nanoparticles as precursors. ACS Catal. 2016, 6, 2496–2500.

[13]

Yuan, Y.; Huang, S. Y.; Wang, H. Y.; Wang, Y. F.; Wang, J.; Lv, J.; Li, Z. H.; Ma, X. B. Monodisperse nano-Fe3O4 on α-Al2O3 catalysts for Fischer–Tropsch synthesis to lower olefins: Promoter and size effects. ChemCatChem 2017, 9, 3144–3152.

[14]

Zhao, Q.; Liang, H. T.; Huang, S. Y.; Han, X. X.; Wang, H. Y.; Wang, J.; Wang, Y.; Ma, X. B. Tunable Fe3O4 nanoparticles assembled porous microspheres as catalysts for Fischer–Tropsch synthesis to lower olefins. Catal. Today 2021, 368, 133–139.

[15]

Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for Fischer–Tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

[16]

Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.

[17]

Sun, M. R.; Chen, C. L.; Wu, M. H.; Zhou, D. N.; Sun, Z. Y.; Fan, J. L.; Chen, W. X.; Li, Y. J. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Res. 2022, 15, 1753–1778.

[18]

Cheng, Q. P.; Zhao, N.; Lyu, S. S.; Tian, Y.; Gao, F.; Dong, L.; Jiang, Z.; Zhang, J.; Tsubaki, N.; Li, X. G. Tuning interaction between cobalt catalysts and nitrogen dopants in carbon nanospheres to promote Fischer–Tropsch synthesis. Appl. Catal. B Environ. 2019, 248, 73–83.

[19]

Lu, J. Z.; Yang, L. J.; Xu, B. L.; Wu, Q.; Zhang, D.; Yuan, S. J.; Zhai, Y.; Wang, X. Z.; Fan, Y. N.; Hu, Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer–Tropsch catalysts for lower olefins. ACS Catal. 2014, 4, 613–621.

[20]

Wang, D.; Zhou, X. P.; Ji, J.; Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Modified carbon nanotubes by KMnO4 supported iron Fischer–Tropsch catalyst for the direct conversion of syngas to lower olefins. J. Mater. Chem. A 2015, 3, 4560–4567.

[21]

Wang, D.; Ji, J.; Chen, B. X.; Chen, W. Y.; Qian, G.; Duan, X. Z.; Zhou, X. G.; Holmen, A.; Chen, D.; Walmsley, J. C. Novel Fe/MnK-CNTs nanocomposites as catalysts for direct production of lower olefins from syngas. AIChE J. 2017, 63, 154–161.

[22]

Chen, X. Q.; Deng, D. H.; Pan, X. L.; Hu, Y. F.; Bao, X. H. N-doped graphene as an electron donor of iron catalysts for CO hydrogenation to light olefins. Chem. Commun. 2015, 51, 217–220.

[23]

Guo, L. S.; Guo, Z. S.; Liang, J. M.; Yong, X. J.; Sun, S.; Zhang, W.; Sun, J.; Zhao, T. J.; Li, J.; Cui, Y. et al. Quick microwave assembling nitrogen-regulated graphene supported iron nanoparticles for Fischer–Tropsch synthesis. Chem. Eng. J. 2022, 429, 132063.

[24]

Wang, L. X.; Wang, L.; Meng, X. J.; Xiao, F. S. New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts. Adv. Mater. 2019, 31, 1901905.

[25]

Zhang, J.; Wang, L.; Zhang, B. S.; Zhao, H. S.; Kolb, U.; Zhu, Y. H.; Liu, L. M.; Han, Y.; Wang, G. X.; Wang, C. T. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 2018, 1, 540–546.

[26]

Kang, S. W.; Kim, K.; Chun, D. H.; Yang, J. I.; Lee, H. T.; Jung, H.; Lim, J. T.; Jang, S.; Kim, C. S.; Lee, C. W. et al. High-performance Fe5C2@CMK-3 nanocatalyst for selective and high-yield production of gasoline-range hydrocarbons. J. Catal. 2017, 349, 66–74.

[27]

Gao, C. B.; Lyu, F. L.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

[28]

Lee, J. H.; Lee, H. K.; Chun, D. H.; Choi, H.; Rhim, G. B.; Youn, M. H.; Jeong, H.; Kang, S. W.; Yang, J. I.; Jung, H. et al. Phase-controlled synthesis of thermally stable nitrogen-doped carbon supported iron catalysts for highly efficient Fischer–Tropsch synthesis. Nano Res. 2019, 12, 2568–2575.

[29]

Liu, Y. L.; Ai, K. L.; Lu, L. H. Polydopamine and its derivative materials: Synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115.

[30]

Ang, J. M.; Du, Y. H.; Tay, B. Y.; Zhao, C. Y.; Kong, J. H.; Stubbs, L. P.; Lu, X. H. One-pot synthesis of Fe(III)-polydopamine complex nanospheres: Morphological evolution, mechanism, and application of the carbonized hybrid nanospheres in catalysis and Zn-air battery. Langmuir 2016, 32, 9265–9275.

[31]

Oschatz, M.; Hofmann, J. P.; van Deelen, T. W.; Lamme, W. S.; Krans, N. A.; Hensen, E. J. M.; de Jong, K. P. Effects of the functionalization of the ordered mesoporous carbon support surface on iron catalysts for the Fischer–Tropsch synthesis of lower olefins. ChemCatChem 2017, 9, 620–628.

[32]

Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

[33]

Zhao, Q.; Huang, S. Y.; Han, X. X.; Chen, J. J.; Wang, J. H.; Rykov, A.; Wang, Y.; Wang, M. Y.; Lv, J.; Ma, X. B. Highly active and controllable MOF-derived carbon nanosheets supported iron catalysts for Fischer–Tropsch synthesis. Carbon 2021, 173, 364–375.

[34]

Chernyak, S. A.; Suslova, E. V.; Ivanov, A. S.; Egorov, A. V.; Maslakov, K. I.; Savilov, S. V.; Lunin, V. V. Co catalysts supported on oxidized CNTs: Evolution of structure during preparation, reduction and catalytic test in Fischer–Tropsch synthesis. Appl. Catal. A Gen. 2016, 523, 221–229.

[35]

Galvis, H. M. T.; Bitter, J. H.; Davidian, T.; Ruitenbeek, M.; Dugulan, A. L.; de Jong, K. P. Iron particle size effects for direct production of lower olefins from synthesis gas. J. Am. Chem. Soc. 2012, 134, 16207–16215.

[36]

Zhang, Z. P.; Zhang, J.; Wang, X.; Si, R.; Xu, J.; Han, Y. F. Promotional effects of multiwalled carbon nanotubes on iron catalysts for Fischer–Tropsch to olefins. J. Catal. 2018, 365, 71–85.

[37]

Zeng, Z.; Li, Z. S.; Guan, T.; Guo, S. X.; Hu, Z. W.; Wang, J. H.; Rykov, A.; Lv, J.; Huang, S. Y.; Wang, Y. et al. CoFe alloy carbide catalysts for higher alcohols synthesis from syngas: Evolution of active sites and Na promoting effect. J. Catal. 2022, 405, 430–444.

[38]

Zhu, C.; Zhang, M. W.; Huang, C.; Zhong, L. S.; Fang, K. G. Carbon-encapsulated highly dispersed FeMn nanoparticles for Fischer–Tropsch synthesis to light olefins. New J. Chem. 2018, 42, 2413–2421.

[39]

Wang, C. T.; Fang, W.; Liu, Z. Q.; Wang, L.; Liao, Z. W.; Yang, Y. R.; Li, H. J.; Liu, L.; Zhou, H.; Qin, X. D. et al. Fischer–Tropsch synthesis to olefins boosted by MFI zeolite nanosheets. Nat. Nanotechnol. 2022, 17, 714–720.

[40]

Lu, K.; Huo, C. F.; He, Y. R.; Guo, W. P.; Peng, Q.; Yang, Y.; Li, Y. W.; Wen, X. D. The structure–activity relationship of Fe nanoparticles in CO adsorption and dissociation by reactive molecular dynamics simulations. J. Catal. 2019, 374, 150–160.

[41]

Yao, R. W.; Wei, J.; Ge, Q. J.; Xu, J.; Han, Y.; Ma, Q. X.; Xu, H. Y.; Sun, J. Monometallic iron catalysts with synergistic Na and S for higher alcohols synthesis via CO2 hydrogenation. Appl. Catal. B Environ. 2021, 298, 120556.

[42]

Sharma, P.; Elder, T.; Groom, L. H.; Spivey, J. J. Effect of structural promoters on Fe-based Fischer–Tropsch synthesis of biomass derived syngas. Top. Catal. 2014, 57, 526–537.

[43]

Zhang, S. P.; Li, D. L.; Liu, Y.; Zhang, Y.; Wu, Q. Zirconium doped precipitated Fe-based catalyst for Fischer–Tropsch synthesis to light olefins at industrially relevant conditions. Catal. Lett. 2019, 149, 1486–1495.

[44]

Johnson, G. R.; Werner, S.; Bell, A. T. An investigation into the effects of Mn promotion on the activity and selectivity of Co/SiO2 for Fischer–Tropsch synthesis: Evidence for enhanced CO adsorption and dissociation. ACS Catal. 2015, 5, 5888–5903.

[45]

Zhao, Z. A.; Lu, W.; Yang, R. O.; Zhu, H. J.; Dong, W. D.; Sun, F. F.; Jiang, Z.; Lyu, Y.; Liu, T.; Du, H. et al. Insight into the formation of Co@Co2C catalysts for direct synthesis of higher alcohols and olefins from syngas. ACS Catal. 2018, 8, 228–241.

[46]

Xie, J. X.; Yang, J.; Dugulan, A. I.; Holmen, A.; Chen, D.; de Jong, K. P.; Louwerse, M. J. Size and promoter effects in supported iron Fischer–Tropsch catalysts: Insights from experiment and theory. ACS Catal. 2016, 6, 3147–3157.

[47]

Schulz, H. Selforganization in Fischer–Tropsch synthesis with iron- and cobalt catalysts. Catal. Today 2014, 228, 113–122.

[48]

Xie, J. X.; Paalanen, P. P.; van Deelen, T. W.; Weckhuysen, B. M.; Louwerse, M. J.; de Jong, K. P. Promoted cobalt metal catalysts suitable for the production of lower olefins from natural gas. Nat. Commun. 2019, 10, 167.

File
12274_2022_5417_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2022
Revised: 02 December 2022
Accepted: 18 December 2022
Published: 23 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. U20A20124) and the Program of Introducing Talents of Discipline to Universities (No. BP0618007) are gratefully acknowledged. The authors also thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support.

Return