Journal Home > Volume 16 , Issue 7

Zero-dimensional (0D)-Cs3Bi2I9, two-dimensional (2D)-Cs3Bi2Br9, and one-dimensional (1D)-Cs3Bi2Cl9 perovskite films have been successfully grown on indium tin oxide (ITO) glass substrates, which were used to fabricate memristors with the structure of Al/Cs3Bi2X9 (X = I, Br, and Cl)/ITO glass. The current three types of memristors exhibited bipolar resistive switching behaviors. Both the endurance and retention time tests clearly demonstrated the excellent stability of present devices. Especially, the ON/OFF ratio of the 0D-Cs3Bi2I9 device is close to 104 at the reading voltage of 0.1 V, which is nearly 100 and 1000 times larger than those of the 1D-Cs3Bi2Cl9 device and the 2D-Cs3Bi2Br9 device, respectively. The activation energy of halide vacancies in the Cs3Bi2X9 (X = I, Br, and Cl) films was calculated using the density functional theory by considering a minimum migration path, demonstrating the dimensionality of the Cs3Bi2X9 (X = I, Br, and Cl) film affected the formation and rupture of conductive filaments. Moreover, the short-term plasticity and long-term plasticity of biological synapse were simulated by evaluating the conductance responses of Al/Cs3Bi2X9 (X = I, Br, and Cl)/ITO devices under various voltage pulses in detail. The duration time of long-term plasticity in all the present devices can last for up to 250 s. The 0D-Cs3Bi2I9 device showed both the highest spike-duration-dependent plasticity and paired-pulse facilitation indexes compared to the other two devices. Additionally, the 0D-Cs3Bi2I9 device successfully established the associative learning behavior by simulating the Pavlov’s dog experiment.

File
12274_2023_5411_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 October 2022
Revised: 10 December 2022
Accepted: 15 December 2022
Published: 28 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52271238 and 51971057), the Liaoning Revitalization Talents Program (No. XLYC2002075), and the Research Funds for the Central University (Nos. N2202004 and N2102012).

Return