Journal Home > Volume 16 , Issue 7

Zero-dimensional (0D)-Cs3Bi2I9, two-dimensional (2D)-Cs3Bi2Br9, and one-dimensional (1D)-Cs3Bi2Cl9 perovskite films have been successfully grown on indium tin oxide (ITO) glass substrates, which were used to fabricate memristors with the structure of Al/Cs3Bi2X9 (X = I, Br, and Cl)/ITO glass. The current three types of memristors exhibited bipolar resistive switching behaviors. Both the endurance and retention time tests clearly demonstrated the excellent stability of present devices. Especially, the ON/OFF ratio of the 0D-Cs3Bi2I9 device is close to 104 at the reading voltage of 0.1 V, which is nearly 100 and 1000 times larger than those of the 1D-Cs3Bi2Cl9 device and the 2D-Cs3Bi2Br9 device, respectively. The activation energy of halide vacancies in the Cs3Bi2X9 (X = I, Br, and Cl) films was calculated using the density functional theory by considering a minimum migration path, demonstrating the dimensionality of the Cs3Bi2X9 (X = I, Br, and Cl) film affected the formation and rupture of conductive filaments. Moreover, the short-term plasticity and long-term plasticity of biological synapse were simulated by evaluating the conductance responses of Al/Cs3Bi2X9 (X = I, Br, and Cl)/ITO devices under various voltage pulses in detail. The duration time of long-term plasticity in all the present devices can last for up to 250 s. The 0D-Cs3Bi2I9 device showed both the highest spike-duration-dependent plasticity and paired-pulse facilitation indexes compared to the other two devices. Additionally, the 0D-Cs3Bi2I9 device successfully established the associative learning behavior by simulating the Pavlov’s dog experiment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Resistive switching and artificial synaptic performances of memristor based on low-dimensional bismuth halide perovskites

Show Author's information Feifei Luo1Yanzhao Wu1Junwei Tong2Fubo Tian3Xianmin Zhang1( )
Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China

Abstract

Zero-dimensional (0D)-Cs3Bi2I9, two-dimensional (2D)-Cs3Bi2Br9, and one-dimensional (1D)-Cs3Bi2Cl9 perovskite films have been successfully grown on indium tin oxide (ITO) glass substrates, which were used to fabricate memristors with the structure of Al/Cs3Bi2X9 (X = I, Br, and Cl)/ITO glass. The current three types of memristors exhibited bipolar resistive switching behaviors. Both the endurance and retention time tests clearly demonstrated the excellent stability of present devices. Especially, the ON/OFF ratio of the 0D-Cs3Bi2I9 device is close to 104 at the reading voltage of 0.1 V, which is nearly 100 and 1000 times larger than those of the 1D-Cs3Bi2Cl9 device and the 2D-Cs3Bi2Br9 device, respectively. The activation energy of halide vacancies in the Cs3Bi2X9 (X = I, Br, and Cl) films was calculated using the density functional theory by considering a minimum migration path, demonstrating the dimensionality of the Cs3Bi2X9 (X = I, Br, and Cl) film affected the formation and rupture of conductive filaments. Moreover, the short-term plasticity and long-term plasticity of biological synapse were simulated by evaluating the conductance responses of Al/Cs3Bi2X9 (X = I, Br, and Cl)/ITO devices under various voltage pulses in detail. The duration time of long-term plasticity in all the present devices can last for up to 250 s. The 0D-Cs3Bi2I9 device showed both the highest spike-duration-dependent plasticity and paired-pulse facilitation indexes compared to the other two devices. Additionally, the 0D-Cs3Bi2I9 device successfully established the associative learning behavior by simulating the Pavlov’s dog experiment.

Keywords: low-dimension, resistive switching, artificial synapse, perovskite films

References(105)

[1]

Zidan, M. A.; Strachan, J. P.; Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 2018, 1, 22–29.

[2]

Hwang, B.; Lee, J. S. Recent advances in memory devices with hybrid materials. Adv. Electron. Mater. 2019, 5, 1800519.

[3]

Kang, K. J.; Hu, W.; Tang, X. S. Halide perovskites for resistive switching memory. J. Phys. Chem. Lett. 2021, 12, 11673–11682.

[4]

Choi, J.; Han, J. S.; Hong, K.; Kim, S. Y.; Jang, H. W. Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 2018, 30, 1704002.

[5]

Xiao, Z. G.; Huang, J. S. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater. 2016, 2, 1600100.

[6]

Wu, Y.; Wei, Y.; Huang, Y.; Cao, F.; Yu, D. J.; Li, X. M.; Zeng, H. B. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res. 2017, 10, 1584–1594.

[7]

Liu, S. P.; Yang, B.; Chen, J. S.; Zheng, D. Y.; Tang, Z.; Deng, W. Q.; Han, K. L. Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals. Laser Photonics Rev. 2022, 16, 2100439.

[8]

Zhong, Y. C.; Tang, B.; Fei, M.; Jie, Q.; Tan, J. Q.; Wang, Q. Q.; Liang, S.; Du, J. J. et al. All-photonic miniature perovskite encoder with a terahertz bandwidth. Laser Photonics Rev. 2020, 14, 1900398.

[9]

Baryshnikova, K.; Gets, D.; Liashenko, T.; Pushkarev, A.; Mukhin, I.; Kivshar, Y.; Makarov, S. Broadband antireflection with halide perovskite metasurfaces. Laser Photonics Rev. 2020, 14, 2000338.

[10]

Tai, Q. D.; Cao, J. P.; Wang, T. Y.; Yan, F. Recent advances toward efficient and stable tin-based perovskite solar cells. EcoMat 2019, 1, e12004.

[11]

Gao, W.; Yu, S. F. Reality or fantasy—Perovskite semiconductor laser diodes. EcoMat 2021, 3, e12077.

[12]

Luo, F. F.; Ruan, L. X.; Tong, J. W.; Wu, Y. Z.; Sun, C. X.; Qin, G. W.; Tian, F. B.; Zhang, X. M. Enhanced resistive switching performance in yttrium-doped CH3NH3PbI3 perovskite devices. Phys. Chem. Chem. Phys. 2021, 23, 21757–21768.

[13]

Xia, F.; Xu, Y.; Li, B. X.; Hui, W.; Zhang, S. Y.; Zhu, L.; Xia, Y. D.; Chen, Y. H.; Huang, W. Improved performance of CH3NH3PbI3−xClx resistive switching memory by assembling 2D/3D perovskite heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 15439–15445.

[14]

Lee, S.; Kim, H.; Kim, D. H.; Kim, W. B.; Lee, J. M.; Choi, J.; Shin, H.; Han, G. S.; Jang, H. W.; Jung, H. S. Tailored 2D/3D halide perovskite heterointerface for substantially enhanced endurance in conducting bridge resistive switching memory. ACS Appl. Mater. Interfaces 2020, 12, 17039–17045.

[15]

Wu, C. C.; Zhang, Q. H.; Liu, G. H.; Zhang, Z. H.; Wang, D.; Qu, B.; Chen, Z. J.; Xiao, L. X. From Pb to Bi: A promising family of Pb-free optoelectronic materials and devices. Adv. Energy Mater. 2020, 10, 1902496.

[16]

Hodgkins, T. L.; Savory, C. N.; Bass, K. K.; Seckman, B. L.; Scanlon, D. O.; Djurovich, P. I.; Thompson, M. E.; Melot, B. C. Anionic order and band gap engineering in vacancy ordered triple perovskites. Chem. Comm. 2019, 55, 3164–3167.

[17]

Kim, S. Y.; Yun, Y.; Shin, S.; Lee, J. H.; Heo, Y. W.; Lee, S. Wide range tuning of band gap energy of A3B2X9 perovskite-like halides. Scr. Mater. 2019, 166, 107–111.

[18]

Bai, F.; Hu, Y. H.; Hu, Y. Q.; Qiu, T.; Miao, X. L.; Zhang, S. F. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells. Sol. Energy Mater. Sol. Cells 2018, 184, 15–21.

[19]

Pazoki, M.; Johansson, M. B.; Zhu, H. M.; Broqvist, P.; Edvinsson, T.; Boschloo, G.; Johansson, E. M. J. Bismuth iodide perovskite materials for solar cell applications: Electronic structure, optical transitions, and directional charge transport. J. Phys. Chem. C 2016, 120, 29039–29046.

[20]

Ma, Z. Z.; Shi, Z. F.; Wang, L. T.; Zhang, F.; Wu, D.; Yang, D. W.; Chen, X.; Zhang, Y.; Shan, C. X.; Li, X. J. Water-induced fluorescence enhancement of lead-free cesium bismuth halide quantum dots by 130% for stable white light-emitting devices. Nanoscale 2020, 12, 3637–3645.

[21]

Hussain, A. A. Constructing caesium-based lead-free perovskite photodetector enabling self-powered operation with extended spectral response. ACS Appl. Mater. Interfaces 2020, 12, 46317–46329.

[22]

Hu, Y. Q.; Zhang, S. F.; Miao, X. L.; Su, L. S.; Bai, F.; Qiu, T.; Liu, J. Z.; Yuan, G. L. Ultrathin Cs3Bi2I9 nanosheets as an electronic memory material for flexible memristors. Adv. Mater. Interfaces 2017, 4, 1700131.

[23]

Cuhadar, C.; Kim, S. G.; Yang, J. M.; Seo, J. Y.; Lee, D.; Park, N. G. All-inorganic bismuth halide perovskite-like materials A3Bi2I9 and A3Bi1.8Na0.2I8.6 (A = Rb and Cs) for low-voltage switching resistive memory. ACS Appl. Mater. Interfaces 2018, 10, 29741–29749.

[24]

Ge, S. P.; Guan, X. W.; Wang, Y. T.; Lin, C. H.; Cui, Y. M.; Huang, Y. X.; Zhang, X. R.; Zhang, R. X.; Yang, X. T.; Wu, T. Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias. Adv. Funct. Mater. 2020, 30, 2002110.

[25]

Li, Y.; Wang, J. H.; Yang, Q.; Shen, G. Z. Flexible artificial optoelectronic synapse based on lead-free metal halide nanocrystals for neuromorphic computing and color recognition. Adv. Sci. 2022, 9, 2202123.

[26]

Li, J. C.; Zhang, Y.; Yao, C. Y.; Qin, N.; Chen, R. Q.; Bao, D. H. Optoelectronic modulation of interfacial defects in lead-free perovskite films for resistive switching. Adv. Electron. Mater. 2022, 8, 2101094.

[27]

Kim, S. Y.; Park, D. A.; Park, N. G. Synthetic powder-based thin (< 0.1 μm) Cs3Bi2Br9 perovskite films for air-stable and viable resistive switching memory. ACS Appl. Electron. Mater. 2022, 4, 2388–2395.

[28]

Liu, Q.; Gao, S.; Xu, L.; Yue, W. J.; Zhang, C. W.; Kan, H.; Li, Y.; Shen, G. Z. Nanostructured perovskites for nonvolatile memory devices. Chem. Soc. Rev. 2022, 51, 3341–3379.

[29]

Kresse, G. Ab initio molecular dynamics for liquid metals. J. Non-Cryst. Solids 1995, 192–193, 222–229.

[30]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996, 54, 11169–11186.

[31]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

[32]

Blöchl, P. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[33]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[34]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[35]

Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X. L.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406.

[36]

Haruyama, J.; Sodeyama, K.; Han, L. Y.; Tateyama, Y. First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 2015, 137, 10048–10051.

[37]

Liu, M. N.; Ali-Löytty, H.; Hiltunen, A.; Sarlin, E.; Qudsia, S.; Smått, J. H.; Valden, M.; Vivo, P. Manganese doping promotes the synthesis of bismuth-based perovskite nanocrystals while tuning their band structures. Small 2021, 17, 2100101.

[38]

Waykar, R.; Bhorde, A.; Nair, S.; Pandharkar, S.; Gabhale, B.; Aher, R.; Rondiya, S.; Waghmare, A.; Doiphode, V.; Punde, A. et al. Environmentally stable lead-free cesium bismuth iodide (Cs3Bi2I9) perovskite: Synthesis to solar cell application. J. Phys. Chem. Solids 2020, 146, 109608.

[39]

Yu, B. B.; Liao, M.; Yang, J. X.; Chen, W.; Zhu, Y. D.; Zhang, X. S.; Duan, T.; Yao, W. T.; Wei, S. H.; He, Z. B. Alloy-induced phase transition and enhanced photovoltaic performance: The case of Cs3Bi2I9−xBrx perovskite solar cells. J. Mater. Chem. A 2019, 7, 8818–8825.

[40]

Liu, D.; Yu, B. B.; Liao, M.; Jin, Z. X.; Zhou, L.; Zhang, X. X.; Wang, F. Y.; He, H. T.; Gatti, T.; He, Z. B. Self-powered and broadband lead-free inorganic perovskite photodetector with high stability. ACS Appl. Mater. Interfaces 2020, 12, 30530–30537.

[41]

Tailor, N. K.; Maity, P.; Saidaminov, M. I.; Pradhan, N.; Satapathi, S. Dark self-healing-mediated negative photoconductivity of a lead-free Cs3Bi2Cl9 perovskite single crystal. J. Phys. Chem. Lett. 2021, 12, 2286–2292.

[42]

Tailor, N. K.; Satapathi, S. Photosensitive dielectric and conductivity relaxation in lead-free Cs3Bi2Cl9 perovskite single crystals. J. Phys. Chem. C 2021, 125, 5243–5250.

[43]

Leng, M. Y.; Yang, Y.; Zeng, K.; Chen, Z. W.; Tan, Z. F.; Li, S. R.; Li, J. H.; Xu, B.; Li, D. B.; Hautzinger, M. P. et al. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Adv. Funct. Mater. 2018, 28, 1704446.

[44]

El Ajjouri, Y.; Chirvony, V. S.; Vassilyeva, N.; Sessolo, M.; Palazon, F.; Bolink, H. J. Low-dimensional non-toxic A3Bi2X9 compounds synthesized by a dry mechanochemical route with tunable visible photoluminescence at room temperature. J. Mater. Chem. C 2019, 7, 6236–6240.

[45]

Zhang, P.; Zhang, Y.; Wang, W. H.; Gao, L.; Li, G. F.; Zhang, S.; Lu, J. P.; Yu, Y. F.; Zhang, J. L. Multispectral photodetectors based on 2D material/Cs3Bi2I9 heterostructures with high detectivity. Nanotechnology 2021, 32, 415202.

[46]

Nilă, A.; Baibarac, M.; Matea, A.; Mitran, R.; Baltog, I. Exciton–phonon interactions in the Cs3Bi2I9 crystal structure revealed by Raman spectroscopic studies. Phys. Status Solidi (B) 2017, 254, 1552805.

[47]

Valakh, M. Y.; Lisitsa, M. P.; Trilis, A. V.; Yaremko, A. M.; Peresh, E. Y. Raman scattering in A3B2C9 ferroelectric crystals. Phys. Solid State 1997, 39, 1289–1291.

[48]

Bonomi, S.; Galinetto, P.; Patrini, M.; Romani, L.; Malavasi, L. Optical and structural property tuning in physical vapor deposited bismuth halides Cs3Bi2(I1−xBrx)9 (0 ≤ x ≤ 1). Inorg. Chem. 2021, 60, 14142–14150.

[49]

Shi, M.; Zhou, H. P.; Tian, W. M.; Yang, B.; Yang, S. Q.; Han, K. L.; Li, R. G.; Li, C. Lead-free B-site bimetallic perovskite photocatalyst for efficient benzylic C–H bond activation. Cell Rep. Phys. Sci. 2021, 2, 100656.

[50]

Tailor, N. K.; Satapathi, S. Structural disorder and spin dynamics study in millimeter-sized all-inorganic lead-free cesium bismuth halide perovskite single crystals. ACS Appl. Energy Mater. 2020, 3, 11732–11740.

[51]

Li, Z. Q.; Liu, X. Y.; Zuo, C. L.; Yang, W.; Fang, X. S. Supersaturation-controlled growth of monolithically integrated lead-free halide perovskite single-crystalline thin film for high-sensitivity photodetectors. Adv. Mater. 2021, 33, 2103010.

[52]

Pi, C. J.; Chen, W. Q.; Zhou, W.; Yan, S. P.; Liu, Z. C.; Wang, C.; Guo, Q.; Qiu, J. B.; Yu, X.; Liu, B. T. et al. Highly stable humidity sensor based on lead-free Cs3Bi2Br9 perovskite for breath monitoring. J. Mater. Chem. C 2021, 9, 11299–11305.

[53]

Zhang, G.; Yuan, C. W.; Li, X. F.; Yang, L.; Yang, W. J.; Fang, R. M.; Sun, Y. J.; Sheng, J. P.; Dong, F. The mechanisms of interfacial charge transfer and photocatalysis reaction over Cs3Bi2Cl9 QD/(BiO)2CO3 heterojunction. Chem. Eng. J. 2022, 430, 132974.

[54]

Saidaminov, M. I.; Mohammed, O. F.; Bakr, O. M. Low-dimensional-networked metal halide perovskites: The next big thing. ACS Energy Lett. 2017, 2, 889–896.

[55]

Tailor, N. K.; Maity, P.; Satapathi, S. Observation of negative photoconductivity in lead-free Cs3Bi2Br9 perovskite single crystal. ACS Photonics 2021, 8, 2473–2480.

[56]

Roy, M.; Ghorui, S.; Bhawna, Kangsabanik, J.; Yadav, R.; Alam, A.; Aslam, M. Enhanced visible light absorption in layered Cs3Bi2Br9 halide perovskites: Heterovalent Pb2+ substitution-induced defect band formation. J. Phys. Chem. C 2020, 124, 19484–19491.

[57]

Xiang, G. B.; Wu, Y. W.; Zhang, M.; Cheng, C.; Leng, J. C.; Ma, H. Dimension-dependent bandgap narrowing and metallization in lead-free halide perovskite Cs3Bi2X9 (X = I, Br, and Cl) under high pressure. Nanomaterials 2021, 11, 2712.

[58]

Morgan, E. E.; Mao, L. L.; Teicher, S. M. L.; Wu, G.; Seshadri, R. Tunable perovskite-derived bismuth halides: Cs3Bi2(Cl1−xIx)9. Inorg. Chem. 2020, 59, 3387–3393.

[59]

Li, W. J.; Liu, Y. J.; Gao, Y. X.; Ji, Z.; Fu, Y.; Zhao, C. X.; Mai, W. J. Tunneling-assisted highly sensitive and stable lead-free Cs3Bi2I9 perovskite photodetectors for diffuse reflection imaging. J. Mater. Chem. C 2021, 9, 1008–1013.

[60]

Bass, K. K.; Estergreen, L.; Savory, C. N.; Buckeridge, J.; Scanlon, D. O.; Djurovich, P. I.; Bradforth, S. E.; Thompson, M. E.; Melot, B. C. Vibronic structure in room temperature photoluminescence of the halide perovskite Cs3Bi2Br9. Inorg. Chem. 2017, 56, 42–45.

[61]

Yan, J.; Zhang, S.; Wei, Q. L.; Cao, S.; Zhao, J. L.; Zou, B. S.; Zeng, R. S. Stoichiometry-controlled phase engineering of cesium bismuth halides and reversible structure switch. Adv. Opt. Mater. 2022, 10, 2101406.

[62]

Park, B. W.; Philippe, B.; Zhang, X. L.; Rensmo, H.; Boschloo, G.; Johansson, E. M. J. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 2015, 27, 6806–6813.

[63]

Ji, Z.; Liu, Y. J.; Li, W. J.; Zhao, C. X.; Mai, W. J. Reducing current fluctuation of Cs3Bi2Br9 perovskite photodetectors for diffuse reflection imaging with wide dynamic range. Sci. Bull. 2020, 65, 1371–1379.

[64]

Wang, W. X.; Li, Y.; Yue, W. J.; Gao, S.; Zhang, C. W.; Chen, Z. X.; Chen, Y. H. Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDs-based RRAM. IEEE. Trans. Electron. Devices 2020, 67, 4884–4890.

[65]

Zhu, X. J.; Lee, J.; Lu, W. D. Iodine vacancy redistribution in organic–inorganic halide perovskite films and resistive switching effects. Adv. Mater. 2017, 29, 1700527.

[66]

Cao, G.; Gao, C.; Wang, J. J.; Lan, J. L.; Yan, X. B. Memristor based on two-dimensional titania nanosheets for multi-level storage and information processing. Nano Res. 2022, 15, 8419–8427.

[67]

Muthu, C.; Agarwal, S.; Vijayan, A.; Hazra, P.; Jinesh, K. B.; Nair, V. C. Hybrid perovskite nanoparticles for high-performance resistive random access memory devices: Control of operational parameters through chloride doping. Adv. Mater. Interfaces 2016, 3, 1600092.

[68]

Kim, S. I.; Lee, Y.; Park, M. H.; Go, G. T.; Kim, Y. H.; Xu, W. T.; Lee, H. D.; Kim, H.; Seo, D. G.; Lee, W. et al. Dimensionality dependent plasticity in halide perovskite artificial synapses for neuromorphic computing. Adv. Electron. Mater. 2019, 5, 1900008.

[69]

Kim, D. J.; Tak, Y. J.; Kim, W. G.; Kim, J. K.; Kim, J. H.; Kim, H. J. Resistive switching properties through iodine migrations of a hybrid perovskite insulating layer. Adv. Mater. Interfaces 2017, 4, 1601035.

[70]

Bu, H.; He, C. L.; Xu, Y. Q.; Xing, L.; Liu, X. M.; Ren, S. X.; Yi, S. H.; Chen, L.; Wu, H.; Zhang, G. L. et al. Emerging new-generation detecting and sensing of metal halide perovskites. Adv. Electron. Mater. 2022, 8, 2101204.

[71]

Choi, J.; Park, S.; Lee, J.; Hong, K.; Kim, D. H.; Moon, C. W.; Park, G. D.; Suh, J.; Hwang, J.; Kim, S. Y. et al. Organolead halide perovskites for low operating voltage multilevel resistive switching. Adv. Mater. 2016, 28, 6562–6567.

[72]

Hwang, B.; Gu, C.; Lee, D.; Lee, J. S. Effect of halide-mixing on the switching behaviors of organic–inorganic hybrid perovskite memory. Sci. Rep. 2017, 7, 43794.

[73]

Meloni, S.; Moehl, T.; Tress, W.; Franckevičius, M.; Saliba, M.; Lee, Y. H.; Gao, P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Rothlisberger, U. et al. Ionic polarization-induced current–voltage hysteresis in CH3NH3PbX3 perovskite solar cells. Nat. Commun. 2016, 7, 10334.

[74]

Mills, G.; Jónsson, H.; Schenter, G. K. Reversible work transition state theory: Application to dissociative adsorption of hydrogen. Surf. Sci. 1995, 324, 305–337.

[75]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[76]

Gu, J. Y.; Yan, G. B.; Lian, Y. B.; Mu, Q. Q.; Jin, H. D.; Zhang, Z. C.; Deng, Z.; Peng, Y. Bandgap engineering of a lead-free defect perovskite Cs3Bi2I9 through trivalent doping of Ru3+. RSC Adv. 2018, 8, 25802–25807.

[77]

Lian, L. Y.; Zhai, G. M.; Cheng, F.; Xia, Y.; Zheng, M. Y.; Ke, J. P.; Gao, M. Y.; Liu, H.; Zhang, D. L.; Li, L. Y. et al. Colloidal synthesis of lead-free all-inorganic cesium bismuth bromide perovskite nanoplatelets. CrystEngComm 2018, 20, 7473–7478.

[78]

Tailor, N. K.; Satapathi, S. The impact of Cs3Bi2Cl9 single crystal growth modality on its symmetry and morphology. J. Mater. Res. Technol. 2020, 9, 7149–7157.

[79]

Chiu, F. C.; Chou, H. W.; Lee, J. Y. M. Electrical conduction mechanisms of metal/La2O3/Si structure. J. Appl. Phys. 2005, 97, 103503.

[80]

Gu, C. W.; Lee, J. S. Flexible hybrid organic–inorganic perovskite memory. ACS Nano 2016, 10, 5413–5418.

[81]

Cai, H. M.; Ma, G. K.; He, Y. L.; Liu, C. L.; Wang, H. A remarkable performance of CH3NH3PbI3 perovskite memory based on passivated method. Org. Electron. 2018, 58, 301–305.

[82]

Shin, H. W.; Park, J. H.; Chung, H. Y.; Kim, K. H.; Kim, H. D.; Kim, T. G. Highly uniform resistive switching in SiN nanorod devices fabricated by nanosphere lithography. Appl. Phys. Express 2014, 7, 024202.

[83]

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

[84]

Azpiroz, J. M.; Mosconi, E.; Bisquert, J.; De Angelis, F. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 2015, 8, 2118–2127.

[85]

Yoo, E.; Lyu, M. Q.; Yun, J. H.; Kang, C.; Choi, Y.; Wang, L. Z. Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure. J. Mater. Chem. C 2016, 4, 7824–7830.

[86]

Lee, B. H.; Bae, H.; Seong, H.; Lee, D. I.; Park, H.; Choi, Y. J.; Im, S. G.; Kim, S. O.; Choi, Y. K. Direct observation of a carbon filament in water-resistant organic memory. ACS Nano 2015, 9, 7306–7313.

[87]

Mori, M.; Abegg, M. H.; Gähwiler, B. H.; Gerber, U. A frequency-dependent switch from inhibition to excitation in a hippocampal unitary circuit. Nature 2004, 431, 453–456.

[88]

Sung, S. H.; Kim, T. J.; Shin, H.; Namkung, H.; Im, T. H.; Wang, H. S.; Lee, K. J. Memory-centric neuromorphic computing for unstructured data processing. Nano Res. 2021, 14, 3126–3142.

[89]

Lee, S. H.; Zhu, X. J.; Lu, W. D. Nanoscale resistive switching devices for memory and computing applications. Nano Res. 2020, 13, 1228–1243.

[90]

Yu, H. Y.; Gong, J. D.; Wei, H. H.; Huang, W.; Xu, W. T. Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Mater. Chem. Front. 2019, 3, 941–947.

[91]

Wang, R. Z.; Chen, P. Y.; Hao, D. D.; Zhang, J. Y.; Shi, Q. Q.; Liu, D. P.; Li, L.; Xiong, L. Z.; Zhou, J. H.; Huang, J. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 2021, 13, 43144–43154.

[92]

Hu, S. G.; Liu, Y.; Chen, T. P.; Liu, Z.; Yu, Q.; Deng, L. J.; Yin, Y.; Hosaka, S. Emulating the paired-pulse facilitation of a biological synapse with a NiOx-based memristor. Appl. Phys. Lett. 2013, 102, 183510.

[93]

Liu, G.; Wang, C.; Zhang, W. B.; Pan, L.; Zhang, C. C.; Yang, X.; Fan, F.; Chen, Y.; Li, R. W. Organic biomimicking memristor for information storage and processing applications. Adv. Electron. Mater. 2016, 2, 1500298.

[94]

Engert, F.; Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 1999, 399, 66–70.

[95]

Du, C.; Ma, W.; Chang, T.; Sheridan, P.; Lu, W. D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 2015, 25, 4290–4299.

[96]

Huang, W.; Xia, X. W.; Zhu, C.; Steichen, P.; Quan, W. D.; Mao, W. W.; Yang, J. P.; Chu, L.; Li, X. A. Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 2021, 13, 85.

[97]

Kwak, K. J.; Lee, D. E.; Kim, S. J.; Jang, H. W. Halide perovskites for memristive data storage and artificial synapses. J. Phys. Chem. Lett. 2021, 12, 8999–9010.

[98]

Li, J. K.; Ge, C.; Lu, H. T.; Guo, H. Z.; Guo, E. J.; He, M.; Wang, C.; Yang, G. Z.; Jin, K. J. Energy-efficient artificial synapses based on oxide tunnel junctions. ACS Appl. Mater. Interfaces 2019, 11, 43473–43479.

[99]

Liu, L.; Cheng, Z. Q.; Jiang, B.; Liu, Y. X.; Zhang, Y. L.; Yang, F.; Wang, J. H.; Yu, X. F.; Chu, P. K.; Ye, C. Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Interfaces 2021, 13, 30797–30805.

[100]

Kim, S. G.; Van Le, Q.; Han, J. S.; Kim, H.; Choi, M. J.; Lee, S. A.; Kim, T. L.; Kim, S. B.; Kim, S. Y.; Jang, H. W. Dual-phase all-inorganic cesium halide perovskites for conducting-bridge memory-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1906686.

[101]

Xu, W. T.; Cho, H.; Kim, Y. H.; Kim, Y. T.; Wolf, C.; Park, C. G.; Lee, T. W. Organometal halide perovskite artificial synapses. Adv. Mater. 2016, 28, 5916–5922.

[102]

Periyal, S. S.; Jagadeeswararao, M.; Ng, S. E.; John, R. A.; Mathews, N. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 2020, 5, 2000514.

[103]

Gong, J. D.; Wei, H. H.; Ni, Y.; Zhang, S.; Du, Y.; Xu, W. T. Methylammonium halide-doped perovskite artificial synapse for light-assisted environmental perception and learning. Mater. Today Phys. 2021, 21, 100540.

[104]

Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595.

[105]

Xu, W. T.; Min, S. Y.; Hwang, H.; Lee, T. W. Organic core–sheath nanowire artificial synapses with femtojoule energy consumption. Sci. Adv. 2016, 2, e1501326.

File
12274_2023_5411_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 October 2022
Revised: 10 December 2022
Accepted: 15 December 2022
Published: 28 April 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52271238 and 51971057), the Liaoning Revitalization Talents Program (No. XLYC2002075), and the Research Funds for the Central University (Nos. N2202004 and N2102012).

Return