Journal Home > Volume 16 , Issue 5

Bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts with the advantages of excellent activity and stability are the vital components of air cathodes for rechargeable Zn–air batteries (ZABs). Herein, the carbon aerogel with honeycomb-like structure, N and S double doping and loaded with FeCo alloy nanoparticles (NSCA/FeCo) was prepared successfully as cathodes for rechargeable liquid flow and two-dimensional flexible ZABs by clever directional casting. The interaction between the bimetallic alloy and the double-doped carbon with specifical structure, large surface, and great conductivity endows NSCA/FeCo with effective ORR/OER active sites and small charge/mass transport barrier, thus achieving outstanding bifunctional catalytic performance. The NSCA/FeCo displays a half-wave potential of +0.85 V (vs. reversible hydrogen electrode (RHE)) for ORR and an overpotential of 335 mV at a current density of 10 mA·cm−2 for OER, which is even comparable to the performance of noble-metal catalysts in relevant fields (Pt/C for ORR and RuO2 for OER). Consequently, the rechargeable liquid flow ZABs assembled with NSCA/FeCo showed excellent performance (maximum power density: 132.0 mW·cm−2, specific capacity: 804.5 Wh·kg−1 at 10 mA·cm−2, charge and discharge cycle stability of more than 250 cycles). Furthermore, the flexible NSCA/FeCo-based ZABs have a maximum power density of 43.0 mW·cm−2, outstanding charging–discharge stability of more than 450 cycles, and exhibit good flexibility under different bending conditions. Therefore, this work has provided an efficient bifunctional electrocatalyst for OER/ORR and a promising strategy of air cathodes for rechargeable and wearable ZABs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

FeCo alloy/N, S co-doped carbon aerogel derived from directional-casting cellulose nanofibers for rechargeable liquid flow and flexible Zn–air batteries

Show Author's information Yiwen Zhang1,§Xifeng Zhang1,§Yuting Li1Juan Wang1( )Sibudjing Kawi2( )Qin Zhong1( )
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117582, Singapore

§ Yiwen Zhang and Xifeng Zhang contributed equally to this work.

Abstract

Bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts with the advantages of excellent activity and stability are the vital components of air cathodes for rechargeable Zn–air batteries (ZABs). Herein, the carbon aerogel with honeycomb-like structure, N and S double doping and loaded with FeCo alloy nanoparticles (NSCA/FeCo) was prepared successfully as cathodes for rechargeable liquid flow and two-dimensional flexible ZABs by clever directional casting. The interaction between the bimetallic alloy and the double-doped carbon with specifical structure, large surface, and great conductivity endows NSCA/FeCo with effective ORR/OER active sites and small charge/mass transport barrier, thus achieving outstanding bifunctional catalytic performance. The NSCA/FeCo displays a half-wave potential of +0.85 V (vs. reversible hydrogen electrode (RHE)) for ORR and an overpotential of 335 mV at a current density of 10 mA·cm−2 for OER, which is even comparable to the performance of noble-metal catalysts in relevant fields (Pt/C for ORR and RuO2 for OER). Consequently, the rechargeable liquid flow ZABs assembled with NSCA/FeCo showed excellent performance (maximum power density: 132.0 mW·cm−2, specific capacity: 804.5 Wh·kg−1 at 10 mA·cm−2, charge and discharge cycle stability of more than 250 cycles). Furthermore, the flexible NSCA/FeCo-based ZABs have a maximum power density of 43.0 mW·cm−2, outstanding charging–discharge stability of more than 450 cycles, and exhibit good flexibility under different bending conditions. Therefore, this work has provided an efficient bifunctional electrocatalyst for OER/ORR and a promising strategy of air cathodes for rechargeable and wearable ZABs.

Keywords: bifunctional electrocatalyst, flexible batteries, carbon aerogel, FeCo alloy, directional freeze-casting, rechargeable zinc–air batteries

References(68)

[1]

Zhu, Y. T.; Yue, K. H.; Xia, C. F.; Zaman, S.; Yang, H.; Wang, X. Y.; Yan, Y.; Xia, B. Y. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc–air batteries. Nano-Micro Lett. 2021, 13, 137.

[2]

Chen, D.; Chen, X.; Cui, Z. X.; Li, G. F.; Han, B.; Zhang, Q.; Sui, J.; Dong, H. Z.; Yu, J. H.; Yu, L. Y. et al. Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn–air batteries. Chem. Eng. J. 2020, 399, 125718.

[3]

Fu, J.; Liang, R. L.; Liu, G. H.; Yu, A. P.; Bai, Z. Y.; Yang, L.; Chen, Z. W. Recent progress in electrically rechargeable zinc–air batteries. Adv. Mater. 2019, 31, 1805230.

[4]

Hou, C. C.; Zou, L. L.; Wang, Y.; Xu, Q. MOF-mediated fabrication of a porous 3D superstructure of carbon nanosheets decorated with ultrafine cobalt phosphide nanoparticles for efficient electrocatalysis and zinc–air batteries. Angew. Chem., Int. Ed. 2020, 59, 21360–21366.

[5]

Fu, X. M.; Chen, Y. Y.; Wang, T.; Li, Z. W.; Lei, Y.; Kawi, S. Core-shell nanoarray structured La doped Cu(OH)2@NiCo layered double hydroxide for oxygen evolution reaction. Int. J. Hydrog. Energy 2022, 47, 27996–28006.

[6]

Xu, L.; Wu, S. Q.; He, X. Y.; Wang, H.; Deng, D. J.; Wu, J. C.; Li, H. N. Interface engineering of anti-perovskite Ni3FeN/VN heterostructure for high-performance rechargeable zinc–air batteries. Chem. Eng. J. 2022, 437, 135291.

[7]

Yin, M. Y.; Zhang, Y. Y.; Bian, Z. F.; Bu, Y. F.; Chen, X. Y.; Zhu, T. L.; Wang, Z. G.; Wang, J.; Kawi, S.; Zhong, Q. Efficient and stable nanoporous functional composited electrocatalyst derived from Zn/Co-bimetallic zeolitic imidazolate frameworks for oxygen reduction reaction in alkaline media. Electrochim. Acta 2019, 299, 610–617.

[8]

Li, Y. T.; Chen, X. Y.; Wang, J.; Wang, Z. G.; Kawi, S.; Zhong, Q. One-step synthesis of interwoven MoS2–CoNi2S4 heterostructures as high-activity water oxidation electrocatalysts. Catal. Today 2021, 364, 132–139.

[9]

Wang, Y. B.; Jiang, Y.; Zhao, Y. X.; Ge, X. L.; Lu, Q.; Zhang, T.; Xie, D. S.; Li, M.; Bu, Y. F. Design strategies of perovskite nanofibers electrocatalysts for water splitting: A mini review. Chem. Eng. J. 2023, 451, 138710.

[10]

Liu, G. H.; Li, J. D.; Fu, J.; Jiang, G. P.; Lui, G.; Luo, D.; Deng, Y. P.; Zhang, J.; Cano, Z. P.; Yu, A. P. et al. An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc–air batteries. Adv. Mater. 2019, 31, 1806761.

[11]

Wu, S. Q.; Deng, D. J.; Zhang, E. J.; Li, H. N.; Xu, L. CoN nanoparticles anchored on ultra-thin N-doped graphene as the oxygen reduction electrocatalyst for highly stable zinc–air batteries. Carbon 2022, 196, 347–353.

[12]

Wang, Y. Y.; Kumar, A.; Ma, M.; Jia, Y.; Wang, Y.; Zhang, Y.; Zhang, G. X.; Sun, X. M.; Yan, Z. F. Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn–air battery. Nano Res. 2020, 13, 1090–1099.

[13]

Wu, N.; Lei, Y. P.; Wang, Q. C.; Wang, B.; Han, C.; Wang, Y. D. Facile synthesis of FeCo@NC core–shell nanospheres supported on graphene as an efficient bifunctional oxygen electrocatalyst. Nano Res. 2017, 10, 2332–2343.

[14]

Li, C. L.; Wu, M. C.; Liu, R. High-performance bifunctional oxygen electrocatalysts for zinc–air batteries over mesoporous Fe/Co-N-C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B Environ. 2019, 244, 150–158.

[15]

Wang, Y.; Qiao, M. F.; Mamat, X. An advantage combined strategy for preparing bi-functional electrocatalyst in rechargeable zinc-air batteries. Chem. Eng. J. 2020, 402, 126214.

[16]

Zhang, T. R.; Bian, J. J.; Zhu, Y. Q.; Sun, C. W. FeCo nanoparticles encapsulated in N-doped carbon nanotubes coupled with layered double (Co, Fe) hydroxide as an efficient bifunctional catalyst for rechargeable zinc–air batteries. Small 2021, 17, 2103737.

[17]

Qian, Y. H.; Hu, Z. G.; Ge, X. M.; Yang, S. L.; Peng, Y. W.; Kang, Z. X.; Liu, Z. L.; Lee, J. Y.; Zhao, D. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn–air batteries. Carbon 2017, 111, 641–650.

[18]

Yue, S.; Wang, S. S.; Jiao, Q. Z.; Feng, X. T.; Zhan, K.; Dai, Y. Q.; Feng, C. H.; Li, H. S.; Feng, T. Y.; Zhao, Y. Preparation of yolk–shell-structured CoxFe1−xP with enhanced OER performance. ChemSusChem 2019, 12, 4461–4470.

[19]

Xu, L.; Deng, D. J.; Tian, Y. H.; Li, H. P.; Qian, J. C.; Wu, J. C.; Li, H. N. Dual-active-sites design of CoNx anchored on zinc-coordinated nitrogen-codoped porous carbon with efficient oxygen catalysis for high-stable rechargeable zinc-air batteries. Chem. Eng. J. 2021, 408, 127321.

[20]

Li, Y. W.; Zhang, W. J.; Li, J.; Ma, H. Y.; Du, H. M.; Li, D. C.; Wang, S. N.; Zhao, J. S.; Dou, J. M.; Xu, L. Q. Fe-MOF-derived efficient ORR/OER bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Appl. Mater. Interfaces 2020, 12, 44710–44719.

[21]

Deng, D. J.; Qian, J. C.; Liu, X. Z.; Li, H. P.; Su, D.; Li, H. N.; Li, H. M.; Xu, L. Non-covalent interaction of atomically dispersed Cu and Zn pair sites for efficient oxygen reduction reaction. Adv. Funct. Mater. 2022, 32, 2203471.

[22]

Feng, X.; Bai, Y.; Liu, M. Q.; Li, Y.; Yang, H. Y.; Wang, X. R.; Wu, C. Untangling the respective effects of heteroatom-doped carbon materials in batteries, supercapacitors and the ORR to design high performance materials. Energy Environ. Sci. 2021, 14, 2036–2089.

[23]

Li, G. J.; Tang, Y. B.; Fu, T. T.; Xiang, Y.; Xiong, Z. P.; Si, Y. J.; Guo, C. Z.; Jiang, Z. Q. S, N co-doped carbon nanotubes coupled with CoFe nanoparticles as an efficient bifunctional ORR/OER electrocatalyst for rechargeable Zn-air batteries. Chem. Eng. J. 2022, 429, 132174.

[24]

Wang, Z. H.; Shen, D. K.; Wu, C. F.; Gu, S. State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chem. 2018, 20, 5031–5057.

[25]

Yao, X. L.; Yu, W. J.; Xu, X.; Chen, F.; Fu, Q. Amphiphilic, ultralight, and multifunctional graphene/nanofibrillated cellulose aerogel achieved by cation-induced gelation and chemical reduction. Nanoscale 2015, 7, 3959–3964.

[26]

Xu, T.; Du, H. S.; Liu, H. Y.; Liu, W.; Zhang, X. Y.; Si, C. L.; Liu, P. W.; Zhang, K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 2021, 33, 2101368.

[27]

Chen, C.; Zhang, Y.; Zeng, J.; Zhang, F. Q.; Zhou, K. C.; Bowen, C. R.; Zhang, D. Aligned macroporous TiO2/chitosan/reduced graphene oxide (rGO) composites for photocatalytic applications. Appl. Surf. Sci. 2017, 424, 170–176.

[28]

Pan, Z. Z.; Nishihara, H.; Iwamura, S.; Sekiguchi, T.; Sato, A.; Isogai, A.; Kang, F. Y.; Kyotani, T.; Yang, Q. H. Cellulose nanofiber as a distinct structure-directing agent for xylem-like microhoneycomb monoliths by unidirectional freeze-drying. ACS Nano 2016, 10, 10689–10697.

[29]

Peng, X. W.; Wu, K. Z.; Hu, Y. J.; Zhuo, H.; Chen, Z. L.; Jing, S. S.; Liu, Q. Z.; Liu, C. F.; Zhong, L. X. A mechanically strong and sensitive CNT/rGO-CNF carbon aerogel for piezoresistive sensors. J. Mater. Chem. A 2018, 6, 23550–23559.

[30]

Saito, T.; Kimura, S.; Nishiyama, Y.; Isogai, A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 2007, 8, 2485–2491.

[31]

Zhou, S. Y.; Kong, X. Y.; Zheng, B.; Huo, F. W.; Strømme, M.; Xu, C. Cellulose nanofiber @ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 2019, 13, 9578–9586.

[32]

Chen, Y. M.; Wang, H.; Liu, F. S.; Gai, H. J.; Ji, S.; Linkov, V.; Wang, R. F. Hydrophobic 3D Fe/N/S doped graphene network as oxygen electrocatalyst to achieve unique performance of zinc–air battery. Chem. Eng. J. 2018, 353, 472–480.

[33]

Tian, Y.; Estevez, D.; Wei, H. J.; Peng, M. Y.; Zhou, L. P.; Xu, P.; Wu, C.; Yan, M.; Wang, H. A.; Peng, H. X. et al. Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption. Chem. Eng. J. 2021, 421, 129781.

[34]

Zhang, X. X.; Wang, H. K.; Cai, Z. Y.; Yan, N.; Liu, M. H.; Yu, Y. Highly compressible and hydrophobic anisotropic aerogels for selective oil/organic solvent absorption. ACS Sustainable Chem. Eng. 2019, 7, 332–340.

[35]

Liu, F.; Wang, C. J.; Sui, X.; Riaz, M. A.; Xu, M. Y.; Wei, L.; Chen, Y. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019, 1, 173–199.

[36]

Fei, Y.; Liang, M.; Yan, L. W.; Chen, Y.; Zou, H. W. Co/C@cellulose nanofiber aerogel derived from metal–organic frameworks for highly efficient electromagnetic interference shielding. Chem. Eng. J. 2020, 392, 124815.

[37]

Samanta, A.; Raj, C. R. Bifunctional nitrogen-doped hybrid catalyst based on onion-like carbon and graphitic carbon encapsulated transition metal alloy nanostructure for rechargeable zinc–air battery. J. Power Sources 2020, 455, 227975.

[38]

Zhang, H. W.; Zhao, M. Q.; Liu, H. R.; Shi, S. R.; Wang, Z. H.; Zhang, B.; Song, L.; Shang, J. Z.; Yang, Y.; Ma, C. et al. Ultrastable FeCo bifunctional electrocatalyst on Se-doped CNTs for liquid and flexible all-solid-state rechargeable Zn–air batteries. Nano Lett. 2021, 21, 2255–2264.

[39]

Cao, S.; Shang, W. Z.; Li, G. L.; Lu, Z. F.; Wang, X.; Yan, Y.; Hao, C.; Wang, S. L.; Sun, G. Q. Defect-rich and metal-free N, S co-doped 3D interconnected mesoporous carbon material as an advanced electrocatalyst towards oxygen reduction reaction. Carbon 2021, 184, 127–135.

[40]

Lai, C. L.; Gong, M. X.; Zhou, Y. C.; Fang, J. Y.; Huang, L.; Deng, Z. P.; Liu, X. P.; Zhao, T. H.; Lin, R. Q.; Wang, K. L. et al. Sulphur modulated Ni3FeN supported on N/S co-doped graphene boosts rechargeable/flexible Zn–air battery performance. Appl. Catal. B Environ. 2020, 274, 119086.

[41]

Yao, Z. H.; Li, Y. T.; Chen, D. S.; Zhang, Y. W.; Bao, X. H.; Wang, J.; Zhong, Q. γ-Fe2O3 clusters embedded in 1D porous N-doped carbon matrix as pH-universal electrocatalyst for enhanced oxygen reduction reaction. Chem. Eng. J. 2021, 415, 129033.

[42]

Kim, K.; Min, K.; Go, Y.; Lee, Y.; Shim, S. E.; Lim, D.; Baeck, S. H. FeCo alloy nanoparticles embedded in N-doped carbon supported on highly defective ketjenblack as effective bifunctional electrocatalysts for rechargeable Zn–air batteries. Appl. Catal. B Environ. 2022, 315, 121501.

[43]

Zhang, Y. W.; Li, Y. T.; Yao, Z. H.; Wang, J.; Zhong, Q. Iron-nickel aerogels anchored on GO nanosheets as efficient oxygen evolution reaction catalysts under industrial conditions. Int. J. Hydrog. Energy 2022, 47, 6996–7004.

[44]

Chen, X. D.; Wang, N.; Shen, K.; Xie, Y. K.; Tan, Y. P.; Li, Y. W. MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces 2019, 11, 25976–25985.

[45]

Sheng, J.; Zhu, S.; Jia, G. D.; Liu, X.; Li, Y. Carbon nanotube supported bifunctional electrocatalysts containing iron-nitrogen-carbon active sites for zinc–air batteries. Nano Res. 2021, 14, 4541–4547.

[46]

Pang, H. P.; Sun, P. P.; Gong, H. Y.; Zhang, N.; Cao, J. C.; Zhang, R. H.; Luo, M. F.; Li, Y.; Sun, G. L.; Li, Y. G. et al. Wood-derived bimetallic and heteroatomic hierarchically porous carbon aerogel for rechargeable flow Zn-air batteries. ACS Appl. Mater. Interfaces 2021, 13, 39458–39469.

[47]

Bayram, E.; Yilmaz, G.; Mukerjee, S. A solution-based procedure for synthesis of nitrogen doped graphene as an efficient electrocatalyst for oxygen reduction reactions in acidic and alkaline electrolytes. Appl. Catal. B Environ. 2016, 192, 26–34.

[48]

Lei, Z.; Tan, Y. Y.; Zhang, Z. Y.; Wu, W.; Cheng, N. C.; Chen, R. Z.; Mu, S. C.; Sun, X. L. Defects enriched hollow porous Co-N-doped carbons embedded with ultrafine CoFe/Co nanoparticles as bifunctional oxygen electrocatalyst for rechargeable flexible solid zinc–air batteries. Nano Res. 2021, 14, 868–878.

[49]

Zhang, S. L.; Guan, B. Y.; Lou, X. W. Co-Fe alloy/N-doped carbon hollow spheres derived from dual metal–organic frameworks for enhanced electrocatalytic oxygen reduction. Small 2019, 15, 1805324.

[50]

Zhang, R. Z.; He, S. J.; Lu, Y. Z.; Chen, W. Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. J. Mater. Chem. A 2015, 3, 3559–3567.

[51]

Meng, H. J.; Pei, S. P.; Li, H.; Zhang, Y. M. CoFe/N, S-C featured with graphitic nanoribbons and multiple CoFe nanoparticles as highly stable and efficient electrocatalysts for the oxygen reduction reaction. ACS Omega 2021, 6, 11059–11067.

[52]

Ma, Y. M.; Gan, L.; Li, D.; Gao, Y. Y.; Yang, X. X.; Wang, K.; Lu, S. Y.; Wu, H.; Ding, S. J.; Xiao, C. H. Rational modulation of N, P co-doped carbon nanotubes encapsulating Co3Fe7 alloy as bifunctional oxygen electrocatalysts for zinc-air batteries. J. Power Sources 2019, 441, 227177.

[53]

Liu, X.; Wang, L.; Yu, P.; Tian, C. G.; Sun, F. F.; Ma, J. Y.; Li, W.; Fu, H. G. A Stable bifunctional catalyst for rechargeable zinc–air batteries: Iron-cobalt nanoparticles embedded in a nitrogen-doped 3D carbon matrix. Angew. Chem., Int. Ed. 2018, 57, 16166–16170.

[54]

Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn–air batteries. Appl. Catal. B Environ. 2019, 256, 117893.

[55]

Zhao, X. M.; Liu, X.; Huang, B. Y.; Wang, P.; Pei, Y. Hydroxyl group modification improves the electrocatalytic ORR and OER activity of graphene supported single and bi-metal atomic catalysts (Ni, Co, and Fe). J. Mater. Chem. A 2019, 7, 24583–24593.

[56]

Xiao, H.; Shin, H.; Goddard, W. A. Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction. Proc. Natl. Acad. Sci. USA 2018, 115, 5872–5877.

[57]

Yao, Z. H.; Chen, D. S.; Li, Y. T.; Lyu, Q. Q.; Wang, J.; Zhong, Q. MOF-derived multi-metal embedded N-doped carbon sheets rich in CNTs as efficient bifunctional oxygen electrocatalysts for rechargeable ZABs. Int. J. Hydrog. Energy 2022, 47, 984–992.

[58]

Sun, T.; Wang, J.; Qiu, C. T.; Ling, X.; Tian, B. B.; Chen, W.; Su, C. L. B, N codoped and defect-rich nanocarbon material as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions. Adv. Sci. 2018, 5, 1800036.

[59]

Wu, K. Z.; Zhang, L.; Yuan, Y. F.; Zhong, L. X.; Chen, Z. X.; Chi, X.; Lu, H.; Chen, Z. H.; Zou, R.; Li, T. Z. et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn–air batteries. Adv. Mater. 2020, 32, e2002292.

[60]

Niu, Q. J.; Guo, J. X.; Tang, Y. H.; Guo, X. D.; Nie, J.; Ma, G. P. Sandwich-type bimetal–organic frameworks/graphene oxide derived porous nanosheets doped Fe/Co-N active sites for oxygen reduction reaction. Electrochim. Acta 2017, 255, 72–82.

[61]

Liang, H.; Li, C. W.; Chen, T.; Cui, L.; Han, J. R.; Peng, Z.; Liu, J. Q. Facile preparation of three-dimensional Co1-xS/sulfur and nitrogen-codoped graphene/carbon foam for highly efficient oxygen reduction reaction. J. Power Sources 2018, 378, 699–706.

[62]

Li, Y.; Zhou, Y. Z.; Zhu, C. Z.; Hu, Y. H.; Gao, S.; Liu, Q. Q.; Cheng, X. N.; Zhang, L. L.; Yang, J.; Lin, Y. H. Porous graphene doped with Fe/N/S and incorporating Fe3O4 nanoparticles for efficient oxygen reduction. Catal. Sci. Technol. 2018, 8, 5325–5333.

[63]

Chen, S.; Chen, S.; Zhang, B. H.; Zhang, J. T. Bifunctional oxygen electrocatalysis of N, S-codoped porous carbon with interspersed hollow CoO nanoparticles for rechargeable Zn–air batteries. ACS Appl. Mater. Interfaces 2019, 11, 16720–16728.

[64]

Khandelwal, M.; Chandrasekaran, S.; Hur, S. H.; Chung, J. S. Chemically controlled in-situ growth of cobalt oxide microspheres on N, S-co-doped reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. J. Power Sources 2018, 407, 70–83.

[65]

Guo, W. J.; Li, D. D.; Zhong, D. Z.; Chen, S.; Hao, G. Y.; Liu, G.; Li, J. P.; Zhao, Q. Loading FeOOH on Ni(OH)2 hollow nanorods to obtain a three-dimensional sandwich catalyst with strong electron interactions for an efficient oxygen evolution reaction. Nanoscale 2020, 12, 983–990.

[66]

Li, H. X.; Zhou, Q.; Liu, F. Y.; Zhang, W. L.; Tan, Z.; Zhou, H. H.; Huang, Z. Y.; Jiao, S. Q.; Kuang, Y. F. Biomimetic design of ultrathin edge-riched FeOOH@carbon nanotubes as high-efficiency electrocatalysts for water splitting. Appl. Catal. B Environ. 2019, 255, 117755.

[67]
Wang, Y. B.; Lu, Q.; Ge, X. L.; Li, F.; Chen, L.; Zhang, Z. H.; Fu, Z. P.; Lu, Y. L.; Song, Y.; Bu, Y. F. Molecular-level proton acceptor boosts oxygen evolution catalysis to enable efficient industrial-scale water splitting. Green Energy Environ., in press, DOI: 10.1016/j.gee.2022.07.001.
[68]

Li, J. J.; Zhang, Y. M.; Zhang, X. H.; Huang, J. Z.; Han, J. C.; Zhang, Z. H.; Han, X. J.; Xu, P.; Song, B. S, N dual-doped graphene-like carbon nanosheets as efficient oxygen reduction reaction electrocatalysts. ACS Appl. Mater. Interfaces 2017, 9, 398–405.

File
12274_2022_5409_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright

Publication history

Received: 16 October 2022
Revised: 10 December 2022
Accepted: 13 December 2022
Published: 08 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023
Return