Journal Home > Volume 16 , Issue 5

Morphological effects of nanoparticles are crucial in many solid-catalyzed chemical transformations. We herein prepared two manganese-ceria solid solutions, well-defined MnCeOx nanorods and MnCeOx-nanocubes, exposing preferentially (111) and (100) facets of ceria, respectively. The incorporation of Mn dopant into ceria lattice strongly enhanced the catalytic performance in the NO reduction with CO. MnCeOx (111) catalyst outperformed MnCeOx (100) counterpart due to its higher population density of oxygen vacancy defects. In-situ infrared spectroscopy investigations indicated that the reaction pathway over MnCeOx and pristine CeO2 is similar and that besides the direct pathway, an indirect pathway via adsorbed hyponitrite as an intermediate cannot be ruled out. X-ray photoelectron and Raman spectroscopies as well as first-principles density functional theory (DFT) calculations indicate that the enhanced catalytic performance of MnCeOx can be traced back to its “Mn–OL(VÖ)–Mn–OL(VÖ)–Ce” connectivities. The Mn dopant strongly facilitates the formation of surface oxygen vacancies (VÖ) by liberating surface lattice oxygen (OL) via CO* + OL → CO2* + VÖ and promotes the reduction of NO, according to NO* + VÖ → N* + OL and 2N* → N2. The Mn dopant impact on both the adsorption of CO and activation of OL reveals that a balance between these two effects is critical for facilitating all reaction steps.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Morphology effects in MnCeOx solid solution-catalyzed NO reduction with CO: Active sites, water tolerance, and reaction pathway

Show Author's information Quanquan Shi1,§( )Yifei Zhang2,3,§Zhiwen Li3Zhongkang Han4( )Liangliang Xu5Alfons Baiker6( )Gao Li3( )
College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Hönggerberg, HCl, CH-8093 Zurich, Switzerland

§ Quanquan Shi and Yifei Zhang contributed equally to this work.

Abstract

Morphological effects of nanoparticles are crucial in many solid-catalyzed chemical transformations. We herein prepared two manganese-ceria solid solutions, well-defined MnCeOx nanorods and MnCeOx-nanocubes, exposing preferentially (111) and (100) facets of ceria, respectively. The incorporation of Mn dopant into ceria lattice strongly enhanced the catalytic performance in the NO reduction with CO. MnCeOx (111) catalyst outperformed MnCeOx (100) counterpart due to its higher population density of oxygen vacancy defects. In-situ infrared spectroscopy investigations indicated that the reaction pathway over MnCeOx and pristine CeO2 is similar and that besides the direct pathway, an indirect pathway via adsorbed hyponitrite as an intermediate cannot be ruled out. X-ray photoelectron and Raman spectroscopies as well as first-principles density functional theory (DFT) calculations indicate that the enhanced catalytic performance of MnCeOx can be traced back to its “Mn–OL(VÖ)–Mn–OL(VÖ)–Ce” connectivities. The Mn dopant strongly facilitates the formation of surface oxygen vacancies (VÖ) by liberating surface lattice oxygen (OL) via CO* + OL → CO2* + VÖ and promotes the reduction of NO, according to NO* + VÖ → N* + OL and 2N* → N2. The Mn dopant impact on both the adsorption of CO and activation of OL reveals that a balance between these two effects is critical for facilitating all reaction steps.

Keywords: active sites, reaction mechanism, NO reduction with CO, manganese-ceria solid solution, morphology effects

References(46)

[1]

Li, Y.; Shen, W. J. Morphology-dependent nanocatalysts: Rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543–1574.

[2]

Shi, Q. Q.; Qin, Z. X.; Sharma, S.; Li, G. Recent progress in heterogeneous catalysis by atomically and structurally precise metal nanoclusters. Chem. Rec. 2021, 21, 879–892.

[3]

Wang, Y. X.; De Boer, J. P.; Kapteijn, F.; Makkee, M. Next generation automotive DeNOx catalysts: Ceria what else? ChemCatChem 2016, 8, 102–105.

[4]

Chen, Y. D.; Li, Y.; Chen, W.; Xu, W. W.; Han, Z. K.; Waheed, A.; Ye, Z. B.; Li, G.; Baiker, A. Continuous dimethyl carbonate synthesis from CO2 and methanol over BixCe1−xOδ monoliths: Effect of bismuth doping on population of oxygen vacancies, activity, and reaction pathway. Nano Res. 2022, 15, 1366–1374.

[5]

Nørskov, J. K.; Bligaard, T.; Hvolbæk, B.; Abild-Pedersen, F.; Chorkendorff, I.; Christensen, C. H. The nature of the active site in heterogeneous metal catalysis. Chem. Soc. Rev. 2008, 37, 2163–2171.

[6]

Huang, W. X. Oxide nanocrystal model catalysts. Acc. Chem. Res. 2016, 49, 520–527.

[7]

Li, Z. M.; Zhang, X. Y.; Shi, Q. Q.; Gong, X.; Xu, H.; Li, G. Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation. Nanoscale Adv. 2021, 3, 7002–7006.

[8]

Nolan, M.; Parker, S. C.; Watson, G. W. The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci. 2005, 595, 223–232.

[9]

Fronzi, M.; Soon, A.; Delley, B.; Traversa, E.; Stampfl, C. Stability and morphology of cerium oxide surfaces in an oxidizing environment: A first-principles investigation. J. Chem. Phys. 2009, 131, 104701.

[10]

Roy, S.; Baiker, A. NOx storage-reduction catalysis: From mechanism and materials properties to storage-reduction performance. Chem. Rev. 2009, 109, 4054–4091.

[11]

Gholami, Z.; Luo, G. H.; Gholami, F.; Yang, F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: A review. Catal. Rev. 2021, 63, 68–119.

[12]

Guo, S.; Zhang, G. M.; Han, Z. K.; Zhang, S. Y.; Sarker, D.; Xu, W. W.; Pan, X. L.; Li, G.; Baiker, A. Synergistic effects of ternary PdO-CeO2-OMS-2 catalyst afford high catalytic performance and stability in the reduction of NO with CO. ACS Appl. Mater. Interfaces 2021, 13, 622–630.

[13]

Martínez-Arias, A.; Hungría, A. B.; Iglesias-Juez, A.; Fernández-García, M.; Anderson, J. A.; Conesa, J. C.; Munuera, G.; Soria, J. Redox and catalytic properties of CuO/CeO2 under CO + O2 + NO: Promoting effect of NO on CO oxidation. Catal. Today 2012, 180, 81–87.

[14]

Shi, Q. Q.; Raza, A.; Xu, L. L.; Li, G. Bismuth oxyhalide quantum dots modified sodium titanate necklaces with exceptional population of oxygen vacancies and photocatalytic activity. J. Colloid Interface Sci. 2022, 625, 750–760.

[15]

Jiang, X. Y.; Lou, L. P.; Chen, Y. X.; Zheng, X. M. Effects of CuO/CeO2 and CuO/γ-Al2O3 catalysts on NO + CO reaction. J. Mol. Catal. A 2003, 197, 193–205.

[16]

Liu, L. J.; Yao, Z. J.; Deng, Y.; Gao, F.; Liu, B.; Dong, L. Morphology and crystal-plane effects of nanoscale ceria on the activity of CuO/CeO2 for NO reduction by CO. ChemCatChem 2011, 3, 978–989.

[17]

Shi, Q. Q.; Wang, Y. H.; Guo, S.; Han, Z. K.; Ta, N.; Li, G.; Baiker, A. NO reduction with CO over CuOx/CeO2 nanocomposites: Influence of oxygen vacancies and lattice strain. Catal. Sci. Technol. 2021, 11, 6543–6552.

[18]

Wang, Y. H.; Jiang, Q. K.; Xu, L. L.; Han, Z. K.; Guo, S.; Li, G.; Baiker, A. Effect of the configuration of copper oxide-ceria catalysts in NO reduction with CO: Superior performance of a copper-ceria solid solution. ACS Appl. Mater. Interfaces 2021, 13, 61078–61087.

[19]

Konsolakis, M.; Lykaki, M. Recent advances on the rational design of non-precious metal oxide catalysts exemplified by CuOx/CeO2 binary system: Implications of size, shape and electronic effects on intrinsic reactivity and metal-support interactions. Catalysts 2020, 10, 160.

[20]

Putla, S.; Amin, M. H.; Reddy, B. M.; Nafady, A.; Al Farhan, K. A.; Bhargava, S. K. MnOx nanoparticle-dispersed CeO2 nanocubes: A remarkable heteronanostructured system with unusual structural characteristics and superior catalytic performance. ACS Appl. Mater. Interfaces 2015, 7, 16525–16535.

[21]

Murugan, B.; Ramaswamy, A. V.; Srinivas, D.; Gopinath, C. S.; Ramaswamy, V. Nature of manganese species in Ce1−xMnxO2−δ solid solutions synthesized by the solution combustion route. Chem. Mater. 2005, 17, 3983–3993.

[22]

Ansari, A. A.; Labis, J. P.; Alam, M.; Ramay, S. M.; Ahmad, N.; Mahmood, A. Synthesis, structural and optical properties of Mn-doped ceria nanoparticles: A promising catalytic material. Acta Metall. Sin. (Engl. Lett.) 2016, 29, 265–273.

[23]

Han, L. P.; Cai, S. X.; Gao, M.; Hasegawa, J. Y.; Wang, P. L.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chem. Rev. 2019, 119, 10916–10976.

[24]

Cai, M.; Bian, X.; Xie, F.; Wu, W. Y.; Cen, P. Preparation and performance of cerium-based catalysts for selective catalytic reduction of nitrogen oxides: A critical review. Catalysts 2021, 11, 361.

[25]

Guo, R. T.; Qin, B.; Wei, L. G.; Yin, T. Y.; Zhou, J.; Pan, W. G. Recent progress of low-temperature selective catalytic reduction of NOx with NH3 over manganese oxide-based catalysts. Phys. Chem. Chem. Phys. 2022, 24, 6363–6382.

[26]

Venkataswamy, P.; Jampaiah, D.; Lin, F. J.; Alxneit, I.; Reddy, B. M. Structural properties of alumina supported Ce-Mn solid solutions and their markedly enhanced catalytic activity for CO oxidation. Appl. Surf. Sci. 2015, 349, 299–309.

[27]

Venkataswamy, P.; Rao, K. N.; Jampaiah, D.; Reddy, B. M. Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures. Appl. Catal. B: Environ. 2015, 162, 122–132.

[28]

Sun, Z. H.; Wang, J.; Zhu, J. X.; Wang, C.; Wang, J. Q.; Shen, M. Q. Investigation of the active sites for NO oxidation reactions over MnOx-CeO2 catalysts. New J. Chem. 2017, 41, 3106–3111.

[29]

Li, H. J.; Qi, G.; Tana; Zhang, X. J.; Li, W.; Shen, W. J. Morphological impact of manganese-cerium oxides on ethanol oxidation. Catal. Sci. Technol. 2011, 1, 1677–1682.

[30]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[31]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[32]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[33]

Hanawalt, J. D.; Rinn, H. W.; Frevel, L. K. Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed. 1938, 10, 457–512.

[34]

Chen, Z. W.; Jiao, Z.; Pan, D. Y.; Li, Z.; Wu, M. H.; Shek, C. H.; Wu, C. M. L.; Lai, J. K. L. Recent advances in manganese oxide nanocrystals: Fabrication, characterization, and microstructure. Chem. Rev. 2012, 112, 3833–3855.

[35]

Dai, Y.; Wang, X. Y.; Dai, Q. G.; Li, D. Effect of Ce and La on the structure and activity of MnOx catalyst in catalytic combustion of chlorobenzene. Appl. Catal. B: Environ. 2012, 111–112, 141–149.

[36]

Pakharukova, V. P.; Moroz, E. M.; Potemkin, D. I.; Snytnikov, P. V. A complex powder X-ray diffraction study of copper-cerium oxide catalysts prepared by the Pechini method. J. Struct. Chem. 2019, 60, 1496–1506.

[37]

Zhong, L.; Fang, Q. Y.; Li, X.; Li, Q.; Zhang, C.; Chen, G. SO2 resistance of Mn-Ce catalysts for lean methane combustion: Effect of the preparation method. Catal. Lett. 2019, 149, 3268–3278.

[38]

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. Sect. A 1976, 32, 751–767.

[39]

Zhang, C. L.; Chen, Y. D.; Wang, H.; Li, Z. M.; Zheng, K.; Li, S. J.; Li, G. Transition metal-mediated catalytic properties of gold nanoclusters in aerobic alcohol oxidation. Nano Res. 2018, 11, 2139–2148.

[40]

Mullins, D. R.; Albrecht, P. M.; Chen, T. L.; Calaza, F. C.; Biegalski, M. D.; Christen, H. M.; Overbury, S. H. Water dissociation on CeO2 (100) and CeO2 (111) thin films. J. Phys. Chem. C 2012, 116, 19419–19428.

[41]

Fronzi, M.; Piccinin, S.; Delley, B.; Traversa, E.; Stampfl, C. Water adsorption on the stoichiometric and reduced CeO2 (111) surface: A first-principles investigation. Phys. Chem. Chem. Phys. 2009, 11, 9188–9199.

[42]

Guo, M.; Lu, J. Q.; Wu, Y. N.; Wang, Y. J.; Luo, M. F. UV and visible Raman studies of oxygen vacancies in rare-earth-doped ceria. Langmuir 2011, 27, 3872–3877.

[43]

Zhang, X. M.; Deng, Y. Q.; Tian, P. F.; Shang, H. H.; Xu, J.; Han, Y. F. Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnOx-CeO2 catalysts. Appl. Catal. B: Environ. 2016, 191, 179–191.

[44]

Urakawa, A.; Burgi, T.; Baiker, A. Sensitivity enhancement and dynamic behavior analysis by modulation excitation spectroscopy: Principle and application in heterogeneous catalysis. Chem. Eng. Sci. 2008, 63, 4902–4909.

[45]

Waheed, A.; Shi, Q. Q.; Maeda, N.; Meier, D. M.; Qin, Z. X.; Li, G.; Baiker, A. Strong activity enhancement of the photocatalytic degradation of an azo dye on Au/TiO2 doped with FeOx. Catalysts 2020, 10, 933.

[46]

Roy, S.; Marimuthu, A.; Hegde, M. S.; Madras, G. High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2−δ: Catalytic and kinetic studies. Appl. Catal. B: Environ. 2007, 71, 23–31.

File
12274_2022_5407_MOESM1_ESM.pdf (748.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 September 2022
Revised: 04 December 2022
Accepted: 15 December 2022
Published: 10 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank financial support from the National Natural Science Foundation of China (Nos. 22065029 and 22172167) and the Natural Science Foundation of Inner Mongolia Autonomous Region (No. 2022MS02002).

Return