Journal Home > Volume 16 , Issue 5

Organic–inorganic metal halide perovskites have attained extensive attention owing to their outstanding photovoltaic performances, but the existence of numerous defects in crystalline perovskites is still a serious constraint for the further development of perovskite solar cells (PSCs). In particular, the rapid crystallization guided by anti-solvents leads to plenty of surficial and interfacial defects in perovskite films. Herein, we report the adoption of a pseudo-halide anion based ionic liquid additive, 1-butyl-3-methylimidazolium thiocyanate (BMIMSCN) for growing ternary cation (CsFAMA, where FA = formamidinium and MA = methylammonium) perovskites with large-scale crystal grains and strong preferential orientation via the enhanced Ostwald ripening. Meanwhile, a novel halide-free passivator, benzylammonium formate (BAFa), was employed as a buffering layer on the perovskite films to suppress surface-dominated charge recombination. As a result, the cooperative effects of BMIMSCN additive and BAFa passivator lead to significant enhancements on fluorescence lifetime (from 79.41 to 201.01 ns), open-circuit voltage (from 1.13 to 1.19 V), and photoelectric conversion efficiency (from 18.90% to 22.33%). Moreover, the BMIMSCN/BAFa-CsFAMA PSCs demonstrated greatly improved stability against moisture and heat. This work suggests a promising strategy to improve the quality of perovskite materials via reducing the surficial and interfacial defects by the synergistic effects of lattice doping and interface engineering.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells

Show Author's information Mengfei Zhu§Yuren Xia§Lina Qin§Kaiqiang ZhangJunchuan LiangCheng ZhaoDaocheng HongMinghang JiangXinmei SongJie WeiPengbo ZhangYuxi TianZhong Jin( )
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China

§ Mengfei Zhu, Yuren Xia, and Lina Qin contributed equally to this work.

Abstract

Organic–inorganic metal halide perovskites have attained extensive attention owing to their outstanding photovoltaic performances, but the existence of numerous defects in crystalline perovskites is still a serious constraint for the further development of perovskite solar cells (PSCs). In particular, the rapid crystallization guided by anti-solvents leads to plenty of surficial and interfacial defects in perovskite films. Herein, we report the adoption of a pseudo-halide anion based ionic liquid additive, 1-butyl-3-methylimidazolium thiocyanate (BMIMSCN) for growing ternary cation (CsFAMA, where FA = formamidinium and MA = methylammonium) perovskites with large-scale crystal grains and strong preferential orientation via the enhanced Ostwald ripening. Meanwhile, a novel halide-free passivator, benzylammonium formate (BAFa), was employed as a buffering layer on the perovskite films to suppress surface-dominated charge recombination. As a result, the cooperative effects of BMIMSCN additive and BAFa passivator lead to significant enhancements on fluorescence lifetime (from 79.41 to 201.01 ns), open-circuit voltage (from 1.13 to 1.19 V), and photoelectric conversion efficiency (from 18.90% to 22.33%). Moreover, the BMIMSCN/BAFa-CsFAMA PSCs demonstrated greatly improved stability against moisture and heat. This work suggests a promising strategy to improve the quality of perovskite materials via reducing the surficial and interfacial defects by the synergistic effects of lattice doping and interface engineering.

Keywords: pseudo-halide ion liquid additive, non-halide ammonium formate passivator, crystalline and interface engineering, efficiency and stability improvements, organic–inorganic perovskite solar cells

References(48)

[1]

De Wolf, S.; Holovsky, J.; Moon, S. J.; Löper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. Organometallic halide perovskites: Sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 2014, 5, 1035–1039.

[2]

McMeekin, D. P.; Sadoughi, G.; Rehman, W.; Eperon, G. E.; Saliba, M.; Hörantner, M. T.; Haghighirad, A.; Sakai, N.; Korte, L.; Rech, B. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 2016, 351, 151–155.

[3]

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

[4]

Miyata, A.; Mitioglu, A.; Plochocka, P.; Portugall, O.; Wang, J. T. W.; Stranks, S. D.; Snaith, H. J.; Nicholas, R. J. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 2015, 11, 582–587.

[5]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[6]

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

[7]

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

[8]

Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.

[9]

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

[10]
NREL. Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html [accessed in May 2022].
[11]

Huang, T. Y.; Tan, S.; Nuryyeva, S.; Yavuz, I.; Babbe, F.; Zhao, Y. P.; Abdelsamie, M.; Weber, M. H.; Wang, R.; Houk, K. N. et al. Performance-limiting formation dynamics in mixed-halide perovskites. Sci. Adv. 2021, 7, eabj1799.

[12]

Ran, C. X.; Xu, J. T.; Gao, W. Y.; Huang, C. M.; Dou, S. X. Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering. Chem. Soc. Rev. 2018, 47, 4581–4610.

[13]

Kim, M.; Kim, G. H.; Lee, T. K.; Choi, I. W.; Choi, H. W.; Jo, Y.; Yoon, Y. J.; Kim, J. W.; Lee, J.; Huh, D. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 2019, 3, 2179–2192.

[14]

Zhang, J. H.; Wang, Z. W.; Mishra, A.; Yu, M. L.; Shasti, M.; Tress, W.; Kubicki, D. J.; Avalos, C. E.; Lu, H. Z.; Liu, Y. H. et al. Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics. Joule 2020, 4, 222–234.

[15]

Jiang, Q.; Zhao, Y.; Zhang, X. W.; Yang, X. L.; Chen, Y.; Chu, Z. M.; Ye, Q. F.; Li, X. X.; Yin, Z. G.; You, J. B. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 2019, 13, 460–466.

[16]

Kim, D.; Jung, H. J.; Park, I. J.; Larson, B. W.; Dunfield, S. P.; Xiao, C. X.; Kim, J.; Tong, J. H.; Boonmongkolras, P.; Ji, S. G. et al. Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 2020, 368, 155–160.

[17]

Wang, R.; Xue, J. J.; Wang, K. L.; Wang, Z. K.; Luo, Y. Q.; Fenning, D.; Xu, G. W.; Nuryyeva, S.; Huang, T. Y.; Zhao, Y. P. et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science 2019, 366, 1509–1513.

[18]

Lin, Y. H.; Sakai, N.; Da, P. M.; Wu, J. Y.; Sansom, H. C.; Ramadan, A. J.; Mahesh, S.; Liu, J. L.; Oliver, R. D. J.; Lim, J. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 2020, 369, 96–102.

[19]

Zhu, X. J.; Du, M. Y.; Feng, J. S.; Wang, H.; Xu, Z.; Wang, L. K.; Zuo, S. N.; Wang, C. Y.; Wang, Z. Y.; Zhang, C. et al. High-efficiency perovskite solar cells with imidazolium-based ionic liquid for surface passivation and charge transport. Angew. Chem., Int. Ed. 2021, 60, 4238–4244.

[20]

Shahiduzzaman, M.; Wang, L. L.; Fukaya, S.; Muslih, E. Y.; Kogo, A.; Nakano, M.; Karakawa, M.; Takahashi, K.; Tomita, K.; Nunzi, J. M. et al. Ionic liquid-assisted MAPbI3 nanoparticle-seeded growth for efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2021, 13, 21194–21206.

[21]

Wang, F.; Geng, W.; Zhou, Y.; Fang, H. H.; Tong, C. J.; Loi, M. A.; Liu, L. M.; Zhao, N. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells. Adv. Mater. 2016, 28, 9986–9992.

[22]

Liang, L. S.; Luo, H. T.; Hu, J. J.; Li, H.; Gao, P. Efficient perovskite solar cells by reducing interface-mediated recombination: A bulky amine approach. Adv. Energy Mater. 2020, 10, 2000197.

[23]

Zhu, H. W.; Ren, Y. M.; Pan, L. F.; Ouellette, O.; Eickemeyer, F. T.; Wu, Y. H.; Li, X. G.; Wang, S. R.; Liu, H. L.; Dong, X. F. et al. Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24%. J. Am. Chem. Soc. 2021, 143, 3231–3237.

[24]

Zhu, H. W.; Liu, Y. H.; Eickemeyer, F. T.; Pan, L. F.; Ren, D.; Ruiz-Preciado, M. A.; Carlsen, B.; Yang, B. W.; Dong, X. F.; Wang, Z. W. et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23. 5% efficiency. Adv. Mater. 2020, 32, 1907757.

[25]

Lin, P. Y.; Loganathan, A.; Raifuku, I.; Li, M. H.; Chiu, Y. Y.; Chang, S. T.; Fakharuddin, A.; Lin, C. F.; Guo, T. F.; Schmidt-Mende, L. et al. Pseudo-halide perovskite solar cells. Adv. Energy Mater. 2021, 11, 2100818.

[26]

Lee, S. H.; Jeong, S.; Seo, S.; Shin, H.; Ma, C. Q.; Park, N. G. Acid dissociation constant: A criterion for selecting passivation agents in perovskite solar cells. ACS Energy Lett. 2021, 6, 1612–1621.

[27]

Zhao, W. J.; Xu, J.; He, K.; Cai, Y.; Han, Y.; Yang, S. M.; Zhan, S.; Wang, D. P.; Liu, Z. K.; Liu, S. Z. A special additive enables all cations and anions passivation for stable perovskite solar cells with efficiency over 23%. Nano-Micro Lett. 2021, 13, 169.

[28]

Yang, Y. Q.; Wu, J. H.; Wang, X. B.; Guo, Q. Y.; Liu, X. P.; Sun, W. H.; Wei, Y. L.; Huang, Y. F.; Lan, Z.; Huang, M. L. et al. Suppressing vacancy defects and grain boundaries via Ostwald ripening for high-performance and stable perovskite solar cells. Adv. Mater. 2020, 32, 1904347.

[29]

Liu, K. K.; Luo, Y. J.; Jin, Y. B.; Liu, T. X.; Liang, Y. M.; Yang, L.; Song, P. Q.; Liu, Z. Y.; Tian, C. B.; Xie, L. Q. et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 2022, 13, 4891.

[30]

Lu, H. Z.; Liu, Y. H.; Ahlawat, P.; Mishra, A.; Tress, W. R.; Eickemeyer, F. T.; Yang, Y. G.; Fu, F.; Wang, Z. W.; Avalos, C. E. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cells. Science 2020, 370, eabb8985.

[31]

Yun, Y. K.; Wang, F. F.; Huang, H. Y.; Fang, Y. Y.; Liu, S. Z.; Huang, W. C.; Cheng, Z. C.; Liu, Y.; Cao, Y. Z.; Gao, M. et al. A nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cells. Adv. Mater. 2020, 32, 1907123.

[32]

Bai, S.; Da, P. M.; Li, C.; Wang, Z. P.; Yuan, Z. C.; Fu, F.; Kawecki, M.; Liu, X. J.; Sakai, N.; Wang, J. T. W. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 2019, 571, 245–250.

[33]

Yang, X. Y.; Fu, Y. Q.; Su, R.; Zheng, Y. F.; Zhang, Y. Z.; Yang, W. Q.; Yu, M. T.; Chen, P.; Wang, Y. J.; Wu, J. et al. Superior carrier lifetimes exceeding 6 µs in polycrystalline halide perovskites. Adv. Mater. 2020, 32, 2002585.

[34]

Chen, S. S.; Xiao, X.; Gu, H. Y.; Huang, J. S. Iodine reduction for reproducible and high-performance perovskite solar cells and modules. Sci. Adv. 2021, 7, eabe8130.

[35]

Bérubé, L. P.; L’Espérance, G. A. A quantitative method of determining the degree of texture of zinc electrodeposits. J. Electrochem. Soc. 1989, 136, 2314.

[36]

Zheng, G. H. J.; Zhu, C.; Ma, J. Y.; Zhang, X. N.; Tang, G.; Li, R. G.; Chen, Y. H.; Li, L.; Hu, J. S.; Hong, J. W. et al. Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade. Nat. Commun. 2018, 9, 2793.

[37]

Ren, M.; Shi, J. L.; Chen, Y. T.; Miao, Y. F.; Zhao, Y. X. Cs-content-dependent organic cation exchange in FA1−xCsxPbI3 perovskite. J. Energy Chem. 2022, 72, 539–544.

[38]

Zheng, H. Y.; Liu, G. Z.; Zhu, L. Z.; Ye, J. J.; Zhang, X. H.; Alsaedi, A.; Hayat, T.; Pan, X.; Dai, S. Y. The effect of hydrophobicity of ammonium salts on stability of Quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 2018, 8, 1800051.

[39]

Xie, L.; Chen, J. Z.; Vashishtha, P.; Zhao, X.; Shin, G. S.; Mhaisalkar, S. G.; Park, N. G. Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells. ACS Energy Lett. 2019, 4, 2192–2200.

[40]

Jeong, J.; Kim, M.; Seo, J.; Lu, H. Z.; Ahlawat, P.; Mishra, A.; Yang, Y. G.; Hope, M. A.; Eickemeyer, F. T.; Kim, M. et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 2021, 592, 381–385.

[41]

Shao, M.; Bie, T.; Yang, L.; Gao, Y. R.; Jin, X.; He, F.; Zheng, N.; Yu, Y.; Zhang, X. L. Over 21% efficiency stable 2D perovskite solar cells. Adv. Mater. 2022, 34, 2107211.

[42]

Liang, J.; Wang, C. X.; Wang, Y. R.; Xu, Z. R.; Lu, Z. P.; Ma, Y.; Zhu, H. F.; Hu, Y.; Xiao, C. C.; Yi, X. et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829–15832.

[43]

Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S. S.; Rothhardt, D.; Hörmann, U.; Amir, Y.; Redinger, A. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 2019, 12, 2778–2788.

[44]

Niu, T. Q.; Lu, J.; Munir, R.; Li, J. B.; Barrit, D.; Zhang, X.; Hu, H. L.; Yang, Z.; Amassian, A.; Zhao, K. et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater. 2018, 30, 1706576.

[45]

Steirer, K. X.; Ndione, P. F.; Widjonarko, N. E.; Lloyd, M. T.; Meyer, J.; Ratcliff, E. L.; Kahn, A.; Armstrong, N. R.; Curtis, C. J.; Ginley, D. S. et al. Enhanced efficiency in plastic solar cells via energy matched solution processed NiOx interlayers. Adv. Energy Mater. 2011, 1, 813–820.

[46]

Tress, W.; Yavari, M.; Domanski, K.; Yadav, P.; Niesen, B.; Baena, J. P. C.; Hagfeldt, A.; Graetzel, M. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 2018, 11, 151–165.

[47]

Zhuang, J.; Mao, P.; Luan, Y. G.; Yi, X. H.; Tu, Z. Y.; Zhang, Y. Y.; Yi, Y. P.; Wei, Y. Z.; Chen, N. L.; Lin, T. et al. Interfacial passivation for perovskite solar cells: The effects of the functional group in phenethylammonium iodide. ACS Energy Lett. 2019, 4, 2913–2921.

[48]

Wang, Y.; Chen, G. Y.; Ouyang, D.; He, X. J.; Li, C.; Ma, R. M.; Yin, W. J.; Choy, W. C. H. High phase stability in CsPbI3 enabled by Pb-I octahedra anchors for efficient inorganic perovskite photovoltaics. Adv. Mater. 2020, 32, 2000186.

File
12274_2022_5403_MOESM1_ESM.pdf (1.1 MB)
12274_2023_5403_MOESM2_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2022
Revised: 01 December 2022
Accepted: 11 December 2022
Published: 21 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors appreciate the support from the National Key R&D Program of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22022505, 21872069, and 22109069), the Fundamental Research Funds for the Central Universities of China (Nos. 020514380266, 020514380272, and 020514380274), the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province (BK20220008), the Nanjing International Collaboration Research Program (Nos. 202201007 and 2022SX00000955), and the Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District (No. ZXL2021273).

Return