Journal Home > Volume 16 , Issue 5

The family of vanadium chalcogenides with variable stoichiometry and abundant crystallographic structures are promising platforms for realizing exotic emergent phenomena. Here, we report on a novel two-dimensional (2D) tetragonal structure of vanadium telluride (VTe) grown by molecular beam epitaxy. The atomic structures and electronic properties are revealed by scanning tunneling microscopy and first-principles calculations. Different from the hexagonal or trigonal lattices of 2D VTe2, the 2D VTe with a V:Te ratio of 1:1 exhibits an uncommon square lattice. Non-zero differential conductivity at the Fermi energy detected by scanning tunneling spectroscopy reveals the metallic feature of VTe. Meanwhile, Friedel oscillations are observed near chiral point defects and domain walls, illustrating the itinerant nature of the electrons close to the Fermi energy. Our first-principles structure searches identify a 2D body-centered cubic (bcc)-like structure with a favorable formation energy to be the candidate of the metallic phase of the tetragonal VTe obtained experimentally. Based on our calculations the 2D bcc-like structure possesses a strong 2D antiferromagnetic order. Our work enriches the family of vanadium chalcogenides and provides a possible 2D antiferromagnetic material for fabricating advanced spintronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A two-dimensional tetragonal structure of vanadium telluride

Show Author's information Zizhao Liu1,2Ye Tao1,2Zhiqiang Cui1Yi Ji1,2Xuhan Zhou1,2Peigen Li1,2Yunwei Zhang1Dingyong Zhong1,2( )
School of Physics, Sun Yat-sen University, Guangzhou 510275, China
State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China

Abstract

The family of vanadium chalcogenides with variable stoichiometry and abundant crystallographic structures are promising platforms for realizing exotic emergent phenomena. Here, we report on a novel two-dimensional (2D) tetragonal structure of vanadium telluride (VTe) grown by molecular beam epitaxy. The atomic structures and electronic properties are revealed by scanning tunneling microscopy and first-principles calculations. Different from the hexagonal or trigonal lattices of 2D VTe2, the 2D VTe with a V:Te ratio of 1:1 exhibits an uncommon square lattice. Non-zero differential conductivity at the Fermi energy detected by scanning tunneling spectroscopy reveals the metallic feature of VTe. Meanwhile, Friedel oscillations are observed near chiral point defects and domain walls, illustrating the itinerant nature of the electrons close to the Fermi energy. Our first-principles structure searches identify a 2D body-centered cubic (bcc)-like structure with a favorable formation energy to be the candidate of the metallic phase of the tetragonal VTe obtained experimentally. Based on our calculations the 2D bcc-like structure possesses a strong 2D antiferromagnetic order. Our work enriches the family of vanadium chalcogenides and provides a possible 2D antiferromagnetic material for fabricating advanced spintronic devices.

Keywords: scanning tunneling microscopy, first-principles calculation, molecular beam epitaxy, vanadium telluride, two-dimensional magnetism

References(48)

[1]

Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

[2]

Kan, M.; Wang, B.; Lee, Y. H.; Sun, Q. A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain. Nano Res. 2015, 8, 1348–1356.

[3]

Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

[4]

Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Zhu, Y. T.; Huang, B. B. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 2012, 6, 1695–1701.

[5]

Shi, J. P.; Huan, Y. H.; Zhao, X. X.; Yang, P. F.; Hong, M.; Xie, C. Y.; Pennycook, S.; Zhang, Y. F. Two-dimensional metallic vanadium ditelluride as a high-performance electrode material. ACS Nano 2021, 15, 1858–1868.

[6]

Su, J. W.; Wang, M. S.; Li, Y.; Wang, F. K.; Chen, Q.; Luo, P.; Han, J. B.; Wang, S.; Li, H. Q.; Zhai, T. Y. Sub-millimeter-scale monolayer p-type H-phase VS2. Adv. Funct. Mater. 2020, 30, 2000240.

[7]

Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

[8]

Meng, Q. H.; Zong, J. Y.; Tian, Q. C.; Chen, W.; Xie, X. D.; Yu, F.; Qiu, X. D.; Wang, K. L.; Zhang, Y. H.; Wang, P. D. et al. Selectable growth and electronic structures of monolayer 1T-VSe2 and V5Se8 films on bilayer graphene. Phys. Status Solidi RRL 2022, 16, 2100601.

[9]

Lasek, K.; Coelho, P. M.; Zberecki, K.; Xin, Y.; Kolekar, S. K.; Li, J. F.; Batzill, M. Molecular beam epitaxy of transition metal (Ti-, V-, and Cr-) tellurides: From monolayer ditellurides to multilayer self-intercalation compounds. ACS Nano 2020, 14, 8473–8484.

[10]

Poddar, P.; Rastogi, A. K. Metastability and disorder effects in nonstoichiometric VS2. J. Phys. Condens. Matter 2002, 14, 2677–2689.

[11]

Liu, H. T.; Xue, Y. Z.; Shi, J. A.; Guzman, R. A.; Zhang, P. P.; Zhou, Z.; He, Y. G.; Bian, C.; Wu, L. M.; Ma, R. S. et al. Observation of the kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett. 2019, 19, 8572–8580.

[12]

Ma, X. Y.; Dai, T.; Dang, S.; Kang, S. D.; Chen, X. X.; Zhou, W. Q.; Wang, G. L.; Li, H. W.; Hu, P.; He, Z. H. et al. Charge density wave phase transitions in large-scale few-layer 1T-VTe2 grown by molecular beam epitaxy. ACS Appl. Mater. Interfaces 2019, 11, 10729–10735.

[13]

Sugawara, K.; Nakata, Y.; Fujii, K.; Nakayama, K.; Souma, S.; Takahashi, T.; Sato, T. Monolayer VTe2: Incommensurate fermi surface nesting and suppression of charge density waves. Phys. Rev. B 2019, 99, 241404(R).

[14]

Wong, P. K. J.; Zhang, W.; Zhou, J.; Bussolotti, F.; Yin, X. M.; Zhang, L.; N'Diaye, A. T.; Morton, S. A.; Chen, W.; Goh, J. et al. Metallic 1T phase, 3d1 electronic configuration and charge density wave order in molecular beam epitaxy grown monolayer vanadium ditelluride. ACS Nano 2019, 13, 12894–12900.

[15]

Coelho, P. M.; Lasek, K.; Nguyen Cong, K.; Li, J. F.; Niu, W.; Liu, W. Q.; Oleynik, I. I.; Batzill, M. Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987–4993.

[16]

Mitsuishi, N.; Sugita, Y.; Bahramy, M. S.; Kamitani, M.; Sonobe, T.; Sakano, M.; Shimojima, T.; Takahashi, H.; Sakai, H.; Horiba, K. et al. Switching of band inversion and topological surface states by charge density wave. Nat. Commun. 2020, 11, 2466.

[17]

Won, D.; Kiem, D. H.; Cho, H.; Kim, D.; Kim, Y.; Jeong, M. Y.; Seo, C.; Kim, J.; Park, J. G.; Han, M. J. et al. Polymorphic spin, charge, and lattice waves in vanadium ditelluride. Adv. Mater. 2020, 32, 1906578.

[18]

Zhang, T.; Xu, X. L.; Dai, Y.; Huang, B. B.; Ma, Y. D. Intrinsic ferromagnetic triferroicity in bilayer T'-VTe2. Appl. Phys. Lett. 2022, 120, 192903.

[19]

Tang, Z. Y.; Chen, Y. C.; Zheng, Y.; Luo, X. Strain engineering magnetocrystalline anisotropy in strongly correlated VTe2 with room-temperature ferromagnetism. Phys. Rev. B 2022, 105, 214403.

[20]

Wang, Y.; Ren, J. H.; Li, J. H.; Wang, Y. J.; Peng, H. N.; Yu, P.; Duan, W. H.; Zhou, S. Y. Evidence of charge density wave with anisotropic gap in a monolayer VTe2 film. Phys. Rev. B 2019, 100, 241404(R).

[21]

Wu, Q. C.; Wang, Z. J.; Guo, Y. C.; Yang, F.; Gao, C. L. Orbital-collaborative charge density waves in monolayer VTe2. Phys. Rev. B 2020, 101, 205105.

[22]

Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

[23]

Miao, G. Y.; Xue, S. W.; Li, B.; Lin, Z. J.; Liu, B.; Zhu, X. T.; Wang, W. H.; Guo, J. D. Real-space investigation of the charge density wave in VTe2 monolayer with broken rotational and mirror symmetries. Phys. Rev. B 2020, 101, 035407.

[24]

Zhu, Z. L.; Liu, Z. L.; Wu, X.; Li, X. Y.; Shi, J. A.; Liu, C.; Qian, G. J.; Zheng, Q.; Huang, L.; Lin, X. et al. Charge density wave states in phase-engineered monolayer VTe2. Chin. Phys. B 2022, 31, 077101.

[25]

Li, X. Y.; Zhu, Z. L.; Yang, Q.; Cao, Z. X.; Wang, Y. L.; Meng, S.; Sun, J. T.; Gao, H. J. Monolayer puckered pentagonal VTe2: An emergent two-dimensional ferromagnetic semiconductor with multiferroic coupling. Nano Res. 2022, 15, 1486–1491.

[26]

Prasad, C.; Singh, R. A. Magnetic and electrical transport properties of vanadium telluride. Z. Naturforsch. A 1980, 35, 701–703.

[27]

Parker, D. S.; Yin, L.; Samolyuk, G. D.; Sanjeewa, L. D.; Wang, X. P.; Cooper, V. R.; Liu, Y. H.; Bud'ko, S.; Sefat, A. S. Insulating antiferromagnetism in VTe. Phys. Rev. B 2022, 105, 174414.

[28]

Xie, W. H.; Liu, B. G.; Pettifor, D. G. Half-metallic ferromagnetism in transition metal pnictides and chalcogenides with wurtzite structure. Phys. Rev. B 2003, 68, 134407.

[29]

Xie, W. H.; Liu, B. G. Half-metallic ferromagnetism in vanadium chalcogenides. J. Phys. Condens. Matter 2003, 15, 5085–5092.

[30]

Xie, W. H.; Xu, Y. Q.; Liu, B. G.; Pettifor, D. G. Half-metallic ferromagnetism and structural stability of zincblende phases of the transition-metal chalcogenides. Phys. Rev. Lett. 2003, 91, 037204.

[31]

Ison, V. V.; Rao, A. R.; Dutta, V. Characterization of spray deposited CdTe films grown under different ambient conditions. Solid State Sci. 2009, 11, 2003–2007.

[32]

Nagaoka, K.; Yaginuma, S.; Nakayama, T. Phase-operation for conduction electron by atomic-scale scattering via single point-defect. Appl. Phys. Lett. 2014, 104, 111602.

[33]

Teichmann, K.; Wenderoth, M.; Loth, S.; Ulbrich, R. G.; Garleff, J. K.; Wijnheijmer, A. P.; Koenraad, P. M. Controlled charge switching on a single donor with a scanning tunneling microscope. Phys. Rev. Lett. 2008, 101, 076103.

[34]

Lee, D. H.; Gupta, J. A. Tunable control over the ionization state of single Mn acceptors in GaAs with defect-induced band bending. Nano Lett. 2011, 11, 2004–2007.

[35]

Marczinowski, F.; Wiebe, J.; Meier, F.; Hashimoto, K.; Wiesendanger, R. Effect of charge manipulation on scanning tunneling spectra of single Mn acceptors in InAs. Phys. Rev. B 2008, 77, 115318.

[36]

Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Imaging standing waves in a two-dimensional electron gas. Nature 1993, 363, 524–527.

[37]

Davis, L. C.; Everson, M. P.; Jaklevic, R. C.; Shen, W. D. Theory of the local density of surface states on a metal: Comparison with scanning tunneling spectroscopy of a Au(111) surface. Phys. Rev. B 1991, 43, 3821–3830.

[38]

Zhang, R.; Clark, G.; Xu, X. D.; Darancet, P. T.; Guest, J. R. Observation of single-electron transport and charging on individual point defects in atomically thin WSe2. J. Phys. Chem. C 2021, 125, 14056–14064.

[39]

Wang, Y. C.; Miao, M. S.; Lv, J.; Zhu, L.; Yin, K. T.; Liu, H. Y.; Ma, Y. M. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J. Chem. Phys. 2012, 137, 224108.

[40]

Chang, K.; Liu, J. W.; Lin, H. C.; Wang, N.; Zhao, K.; Zhang, A. M.; Jin, F.; Zhong, Y.; Hu, X. P.; Duan, W. H. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 2016, 353, 274–278.

[41]

Hamers, R. J.; Tromp, R. M.; Demuth, J. E. Scanning tunneling microscopy of Si(001). Phys. Rev. B 1986, 34, 5343–5357.

[42]

Zhu, Z. Z.; Shima, N.; Tsukada, M. Electronic states of Si(100) reconstructed surfaces. Phys. Rev. B 1989, 40, 11868–11879.

[43]

Wang, Y. C.; Lv, J.; Zhu, L.; Ma, Y. M. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 2010, 82, 094116.

[44]

Wang, Y. C.; Lv, J.; Zhu, L.; Ma, Y. M. CALYPSO: A method for crystal structure prediction. Comput. Phys. Commun. 2012, 183, 2063–2070.

[45]

Gao, P. Y.; Gao, B.; Lu, S. H.; Liu, H. Y.; Lv, J.; Wang, Y. C.; Ma, Y. M. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys. 2022, 17, 23203.

[46]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558(R).

[47]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[48]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

File
12274_2023_5401_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 September 2022
Revised: 20 November 2022
Accepted: 07 December 2022
Published: 09 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 11974431, 92165204, and 11832019) and Guangdong Major Project of Basic and Applied Basic Research (No. 2021B0301030002). The computation part of the work was partially supported by the National Supercomputer Center in Guangzhou.

Return