Journal Home > Volume 16 , Issue 5

Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment for their unprecedented clinical efficacy. Signal regulatory protein α (SIRPα) is a phagocytic checkpoint expressed on macrophages, dendritic cells, and other myeloid cells. Cancer cells inhibit macrophage phagocytosis through the interaction of the CD47–SIRPα axis. Disrupting the CD47–SIRPα axis has therefore been a promising strategy in restoring the immune attack against cancer. Herein, we engineered cellular membrane nanovesicles (NVs) presenting SIRPα receptors for phagocytosis checkpoint blockade to augment the antitumor immune response. Furthermore, zebularine (Zeb), an inhibitor of DNA methyltransferase, was encapsulated into SIRPα NVs to reprogram the immunosuppressive tumor microenvironment together with blockade of phagocytosis checkpoint. It is demonstrated that SIRPα@Zeb can improve tumor immunogenicity, the polarization of tumor-associated macrophages to the M1 phenotype, and increase the infiltration of CD8+ T lymphocytes in tumors. The robust antitumor immune response induced by SIRPα@Zeb significantly suppressed tumor growth and extended mice-bearing melanoma xenograft survival.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Engineering SIRPα cellular membrane-based nanovesicles for combination immunotherapy

Show Author's information Mingyue Wang1,2,§Yanfang Wang3,4,§Yeteng Mu1,2,§Fuxu Yang1,2Zebin Yang2Yuxuan Liu2Lili Huang2Shi Liu5Xingang Guan1,2( )Zhigang Xie5( )Zhen Gu3,4,6,7,8( )
School of Medicine, Taizhou University, Taizhou 318000, China
College of Medical Technology, Beihua University, Jilin 132013, China
Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Jinhua Institute of Zhejiang University, Jinhua 321299, China
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

§ Mingyue Wang, Yanfang Wang, and Yeteng Mu contributed equally to this work.

Abstract

Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment for their unprecedented clinical efficacy. Signal regulatory protein α (SIRPα) is a phagocytic checkpoint expressed on macrophages, dendritic cells, and other myeloid cells. Cancer cells inhibit macrophage phagocytosis through the interaction of the CD47–SIRPα axis. Disrupting the CD47–SIRPα axis has therefore been a promising strategy in restoring the immune attack against cancer. Herein, we engineered cellular membrane nanovesicles (NVs) presenting SIRPα receptors for phagocytosis checkpoint blockade to augment the antitumor immune response. Furthermore, zebularine (Zeb), an inhibitor of DNA methyltransferase, was encapsulated into SIRPα NVs to reprogram the immunosuppressive tumor microenvironment together with blockade of phagocytosis checkpoint. It is demonstrated that SIRPα@Zeb can improve tumor immunogenicity, the polarization of tumor-associated macrophages to the M1 phenotype, and increase the infiltration of CD8+ T lymphocytes in tumors. The robust antitumor immune response induced by SIRPα@Zeb significantly suppressed tumor growth and extended mice-bearing melanoma xenograft survival.

Keywords: tumor-associated macrophages, drug delivery, cancer immunotherapy, nanovesicle, signal regulatory protein α

References(47)

[1]

Waldman, A. D.; Fritz, J. M.; Lenardo, M. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668.

[2]

Singh, S.; Hassan, D.; Aldawsari, H. M.; Molugulu, N.; Shukla, R.; Kesharwani, P. Immune checkpoint inhibitors: A promising anticancer therapy. Drug Discov. Today 2020, 25, 223–229.

[3]

Bagchi, S.; Yuan, R.; Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. -Mech. Dis. 2021, 16, 223–249.

[4]

Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 3801.

[5]

Logtenberg, M. E. W.; Scheeren, F. A.; Schumacher, T. N. The CD47-SIRPα immune checkpoint. Immunity 2020, 52, 742–752.

[6]

Wang, Y. C.; Zhao, C. X.; Liu, Y.; Wang, C.; Jiang, H. J.; Hu, Y. Q.; Wu, J. H. Recent advances of tumor therapy based on the CD47–SIRPα axis. Mol. Pharmaceut. 2022, 19, 1273–1293.

[7]

Barclay, A. N.; van den Berg, T. K. The interaction between signal regulatory protein alpha (SIRPα) and CD47: Structure, function, and therapeutic target. Annu. Rev. Immunol. 2014, 32, 25–50.

[8]

Chao, M. P.; Weissman, I. L.; Majeti, R. The CD47–SIRPα pathway in cancer immune evasion and potential therapeutic implications. Curr. Opin. Immunol. 2012, 24, 225–232.

[9]

Murata, Y.; Kotani, T.; Ohnishi, H.; Matozaki, T. The CD47–SIRPα signalling system: Its physiological roles and therapeutic application. J. Biochem. 2014, 155, 335–344.

[10]

Liu, J.; Xavy, S.; Mihardja, S.; Chen, S.; Sompalli, K.; Feng, D. D.; Choi, T.; Agoram, B.; Majeti, R.; Weissman, I. L. et al. Targeting macrophage checkpoint inhibitor SIRPα for anticancer therapy. JCI Insight 2020, 5, e134728.

[11]

Matlung, H. L.; Szilagyi, K.; Barclay, N. A.; van den Berg, T. K. The CD47–SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol. Rev. 2017, 276, 145–164.

[12]

Feng, M. Y.; Jiang, W.; Kim, B. Y. S.; Zhang, C. C.; Fu, Y. X.; Weissman, I. L. Phagocytosis checkpoints as new targets for cancer immunotherapy. Nat. Rev. Cancer 2019, 19, 568–586.

[13]

Gauttier, V.; Pengam, S.; Durand, J.; Biteau, K.; Mary, C.; Morello, A.; Néel, M.; Porto, G.; Teppaz, G.; Thepenier, V. et al. Selective SIRPα blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy resistance. J. Clin. Invest. 2020, 130, 6109–6123.

[14]

Veillette, A.; Chen, J. SIRPα–CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 2018, 39, 173–184.

[15]

Nie, W. D.; Wu, G. H.; Zhang, J. F.; Huang, L. L.; Ding, J. J.; Jiang, A. Q.; Zhang, Y. H.; Liu, Y. H.; Li, J. C.; Pu, K. Y. et al. Responsive exosome nano-bioconjugates for synergistic cancer therapy. Angew. Chem. 2020, 132, 2034–2038.

[16]

Liu, L.; Li, H. J.; Wang, J. Q.; Zhang, J. C.; Liang, X. J.; Guo, W. S.; Gu, Z. Leveraging macrophages for cancer theranostics. Adv. Drug Deliv. Rev. 2022, 183, 114136.

[17]

Li, J. H.; Jiang, X. Q.; Li, H. J.; Gelinsky, M.; Gu, Z. Tailoring materials for modulation of macrophage fate. Adv. Mater. 2021, 33, e2004172.

[18]

Chao, M. P.; Alizadeh, A. A.; Tang, C.; Jan, M.; Weissman-Tsukamoto, R.; Zhao, F. F.; Park, C. Y.; Weissman, I. L.; Majeti, R. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 2011, 71, 1374–1384.

[19]

Gholamin, S.; Mitra, S. S.; Feroze, A. H.; Liu, J.; Kahn, S. A.; Zhang, M.; Esparza, R.; Richard, C.; Ramaswamy, V.; Remke, M. et al. Disrupting the CD47–SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 2017, 9, eaaf2968.

[20]

Ring, N. G.; Herndler-Brandstetter, D.; Weiskopf, K.; Shan, L.; Volkmer, J. P.; George, B. M.; Lietzenmayer, M.; McKenna, K. M.; Naik, T. J.; McCarty, A. et al. Anti-SIRPα antibody immunotherapy enhances neutrophil and macrophage antitumor activity. Proc. Natl. Acad. Sci. USA 2017, 114, E10578–E10585.

[21]

Querfeld, C.; Thompson, J.; Taylor, M.; Pillai, R.; Johnson, L. D. S.; Catalano, T.; Petrova, P. S.; Uger, R. A.; Irwin, M.; Sievers, E. L. et al. A single direct intratumoral injection of TTI-621 (SIRPαFc) induces antitumor activity in patients with relapsed/refractory mycosis fungoides and Sézary syndrome: Preliminary findings employing an immune checkpoint inhibitor blocking the CD47 “do not eat” signal. Blood 2017, 130 Suppl, 4076.

[22]

Weiskopf, K.; Ring, A. M.; Ho, C. C. M.; Volkmer, J. P.; Levin, A. M.; Volkmer, A. K.; Özkan, E.; Fernhoff, N. B.; van de Rijn, M.; Weissman, I. L. et al. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 2013, 341, 88–91.

[23]

Sikic, B. I.; Lakhani, N.; Patnaik, A.; Shah, S. A.; Chandana, S. R.; Rasco, D.; Colevas, A. D.; O’Rourke, T.; Narayanan, S.; Papadopoulos, K. et al. First-in-human, first-in-class phase I trial of the anti-CD47 antibody Hu5F9-G4 in patients with advanced cancers. J. Clin. Oncol. 2019, 37, 946–953.

[24]

Oronsky, B.; Carter, C.; Reid, T.; Brinkhaus, F.; Knox, S. J. Just eat it: A review of CD47 and SIRP-α antagonism. Semin. Oncol. 2020, 47, 117–124.

[25]

Ansell, S. M.; Maris, M. B.; Lesokhin, A. M.; Chen, R. W.; Flinn, I. W.; Sawas, A.; Minden, M. D.; Villa, D.; Percival, M. E. M.; Advani, A. S. et al. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies. Clin. Cancer Res. 2021, 27, 2190–2199.

[26]

de Miguel, M.; Calvo, E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 2020, 38, 326–333.

[27]

Jenkins, R. W.; Barbie, D. A.; Flaherty, K. T. J. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 2018, 118, 9–16.

[28]

Kubli, S. P.; Berger, T.; Araujo, D. V.; Siu, L. L.; Mak, T. W. Beyond immune checkpoint blockade: Emerging immunological strategies. Nat. Rev. Drug Discov. 2021, 20, 899–919.

[29]

Sasidharan Nair, V.; Elkord, E. Immune checkpoint inhibitors in cancer therapy: A focus on T-regulatory cells. Immunol. Cell Biol. 2018, 96, 21–33.

[30]

Rosenthal, R.; Cadieux, E. L.; Salgado, R.; Bakir, M. A.; Moore, D. A.; Hiley, C. T.; Lund, T.; Tanić, M.; Reading, J. L.; Joshi, K. et al. Neoantigen-directed immune escape in lung cancer evolution. Nature 2019, 567, 479–485.

[31]

Beatty, G. L.; Gladney, W. L. Immune escape mechanisms as a guide for cancer immunotherapy. Clin. Cancer Res. 2015, 21, 687–692.

[32]

Stone, M. L.; Chiappinelli, K. B.; Li, H. L.; Murphy, L. M.; Travers, M. E.; Topper, M. J.; Mathios, D.; Lim, M.; Shih, I. M.; Wang, T. L. et al. Epigenetic therapy activates type I interferon signaling in murine ovarian cancer to reduce immunosuppression and tumor burden. Proc. Natl. Acad. Sci. USA 2017, 114, E10981–E10990.

[33]

Zhang, X. D.; Wang, C.; Wang, J. Q.; Hu, Q. Y.; Langworthy, B.; Ye, Y. Q.; Sun, W. J.; Lin, J.; Wang, T. F.; Fine, J. et al. PD-1 blockade cellular vesicles for cancer immunotherapy. Adv. Mater. 2018, 30, 1707112.

[34]

Pechalrieu, D.; Etievant, C.; Arimondo, P. B. DNA methyltransferase inhibitors in cancer: From pharmacology to translational studies. Biochem. Pharmacol. 2017, 129, 1–13.

[35]

Saleh, M. H.; Wang, L.; Goldberg, M. S. Improving cancer immunotherapy with DNA methyltransferase inhibitors. Cancer Immunol. Immunother. 2016, 65, 787–796.

[36]

Hu, C. H.; Liu, X. H.; Zeng, Y.; Liu, J. Q.; Wu, F. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: Mechanism and clinical application. Clin. Epigenet. 2021, 13, 166.

[37]

Terracina, K. P.; Graham, L. J.; Payne, K. K.; Manjili, M. H.; Baek, A.; Damle, S. R.; Bear, H. D. DNA methyltransferase inhibition increases efficacy of adoptive cellular immunotherapy of murine breast cancer. Cancer Immunol. Immunother. 2016, 65, 1061–1073.

[38]

Chen, X.; Pan, X. H.; Zhang, W. X.; Guo, H. J.; Cheng, S. Y.; He, Q. J.; Yang, B.; Ding, L. Epigenetic strategies synergize with PD-L1/PD-1 targeted cancer immunotherapies to enhance antitumor responses. Acta Pharm. Sin. B 2020, 10, 723–733.

[39]

Yu, G. J.; Wu, Y. F.; Wang, W. Y.; Xu, J.; Lv, X. P.; Cao, X. T.; Wan, T. Low-dose decitabine enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by re-modulating the tumor microenvironment. Cell. Mol. Immunol. 2019, 16, 401–409.

[40]

Xie, M. Q.; Ye, H. F.; Wang, H.; Charpin-El Hamri, G.; Lormeau, C.; Saxena, P.; Stelling, J.; Fussenegger, M. β-cell-mimetic designer cells provide closed-loop glycemic control. Science 2016, 354, 1296–1301.

[41]

Xue, T. Y.; Zhang, Z. R.; Fang, T. L.; Li, B. Q.; Li, Y.; Li, L. Y.; Jiang, Y. H.; Duan, F. F.; Meng, F. Q.; Liang, X.; Zhang, X. D. Cellular vesicles expressing PD-1-blocking scFv reinvigorate T cell immunity against cancer. Nano Res. 2022, 15, 5295–5304.

[42]

Li, L. Y.; Miao, Q. W.; Meng, F. Q.; Li, B. Q.; Xue, T. Y.; Fang, T. L.; Zhang, Z. R.; Zhang, J. X.; Ye, X. Y.; Kang, Y. et al. Genetic engineering cellular vesicles expressing CD64 as checkpoint antibody carrier for cancer immunotherapy. Theranostics 2021, 11, 6033–6043.

[43]

Huang, J.; Yang, B.; Peng, Y.; Huang, J. S.; Wong, S. H. D.; Bian, L. M.; Zhu, K. S.; Shuai, X. T.; Han, S. S. Nanomedicine-boosting tumor immunogenicity for enhanced immunotherapy. Adv. Funct. Mater. 2021, 31, 2011171.

[44]

Stevanović, S.; Pasetto, A.; Helman, S. R.; Gartner, J. J.; Prickett, T. D.; Howie, B.; Robins, H. S.; Robbins, P. F.; Klebanoff, C. A.; Rosenberg, S. A. et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science 2017, 356, 200–205.

[45]

Ruan, H. T.; Hu, Q. Y.; Wen, D.; Chen, Q.; Chen, G. J.; Lu, Y. F.; Wang, J. Q.; Cheng, H.; Lu, W. Y.; Gu, Z. A dual-bioresponsive drug-delivery depot for combination of epigenetic modulation and immune checkpoint blockade. Adv. Mater. 2019, 31, 1806957.

[46]

Leslie, M. C.; Zhao, Y. J.; Lachman, L. B.; Hwu, P.; Bar-Eli, M. Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. Gene Ther. 2007, 14, 316–323.

[47]

Rausch, M. P.; Irvine, K. R.; Antony, P. A.; Restifo, N. P.; Cresswell, P.; Hastings, K. T. GILT accelerates autoimmunity to the melanoma antigen tyrosinase-related protein 1. J. Immunol. 2010, 185, 2828–2835.

File
12274_2023_5397_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 November 2022
Revised: 04 December 2022
Accepted: 08 December 2022
Published: 03 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by National Key R&D Program of China (No. 2021YFA0909900), Zhejiang Provincial Natural Science Foundation of China (No. LY23C100001), National Natural Science Foundation of China (Nos. 51973214 and 51503003), Kunpeng Program from Zhejiang Province, Zhejiang University's start-up packages, Fundamental Research Funds for the Central Universities (No. 2021FZZX001-46), and the Starry Night Science Fund at Shanghai Institute for Advanced Study of Zhejiang University (No. SN-ZJU-SIAS-009).

Return