Journal Home > Volume 16 , Issue 5

Current seasonal influenza vaccines confer only limited coverage of virus strains due to the frequent genetic and antigenic variability of influenza virus (IV). Epitope vaccines that accurately target conserved domains provide a promising approach to increase the breadth of protection; however, poor immunogenicity greatly hinders their application. The protruding (P) domain of the norovirus (NoV), which can self-assemble into a 24-mer particle called the NoV P particle, offers an ideal antigen presentation platform. In this study, a multiepitope nanovaccine displaying influenza epitopes (HMN-PP) was constructed based on the NoV P particle nanoplatform. Large amounts of HMN-PP were easily expressed in Escherichia coli in soluble form. Animal experiments showed that the adjuvanted HMN-PP nanovaccine induced epitope-specific antibodies and haemagglutinin (HA)-specific neutralizing antibodies, and the antibodies could persist for at least three months after the last immunization. Furthermore, HMN-PP induced matrix protein 2 extracellular domain (M2e)-specific antibody-dependent cell-mediated cytotoxicity, CD4+ and CD8+ T-cell responses, and a nucleoprotein (NP)-specific cytotoxic T lymphocyte (CTL) response. These results indicated that the combination of a multiepitope vaccine and self-assembled NoV P particles may be an ideal and effective vaccine strategy for highly variable viruses such as IV and SARS-CoV-2.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Self-assembled multiepitope nanovaccine based on NoV P particles induces effective and lasting protection against H3N2 influenza virus

Show Author's information Jiaojiao Nie1Qingyu Wang1Shenghui Jin1Xin Yao1Lipeng Xu1Yaotian Chang1Fan Ding1Zeyu Li1Lulu Sun1Yuhua Shi1Yaming Shan1,2( )
National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Jilin 130012, China
Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Jilin 130012, China

Abstract

Current seasonal influenza vaccines confer only limited coverage of virus strains due to the frequent genetic and antigenic variability of influenza virus (IV). Epitope vaccines that accurately target conserved domains provide a promising approach to increase the breadth of protection; however, poor immunogenicity greatly hinders their application. The protruding (P) domain of the norovirus (NoV), which can self-assemble into a 24-mer particle called the NoV P particle, offers an ideal antigen presentation platform. In this study, a multiepitope nanovaccine displaying influenza epitopes (HMN-PP) was constructed based on the NoV P particle nanoplatform. Large amounts of HMN-PP were easily expressed in Escherichia coli in soluble form. Animal experiments showed that the adjuvanted HMN-PP nanovaccine induced epitope-specific antibodies and haemagglutinin (HA)-specific neutralizing antibodies, and the antibodies could persist for at least three months after the last immunization. Furthermore, HMN-PP induced matrix protein 2 extracellular domain (M2e)-specific antibody-dependent cell-mediated cytotoxicity, CD4+ and CD8+ T-cell responses, and a nucleoprotein (NP)-specific cytotoxic T lymphocyte (CTL) response. These results indicated that the combination of a multiepitope vaccine and self-assembled NoV P particles may be an ideal and effective vaccine strategy for highly variable viruses such as IV and SARS-CoV-2.

Keywords: nanovaccine, self-assemble, influenza virus, multiepitope, norovirus protruding (NoV P) particle

References(62)

[1]

Bai, L.; Zhao, Y. L.; Dong, J. Z.; Liang, S. M.; Guo, M.; Liu, X. J.; Wang, X.; Huang, Z. X.; Sun, X. Y.; Zhang, Z. et al. Coinfection with influenza A virus enhances SARS-CoV-2 infectivity. Cell Res. 2021, 31, 395–403.

[2]

Cao, K. L.; Wang, X.; Peng, H. R.; Ding, L. F.; Wang, X. W.; Hu, Y. Y.; Dong, L. L.; Yang, T. H.; Hong, X. J.; Xing, M. et al. A single vaccine protects against SARS-CoV-2 and influenza virus in mice. J. Virol. 2022, 96, e0157821.

[3]

Parag, K. V.; du Plessis, L.; Pybus, O. G. Jointly inferring the dynamics of population size and sampling intensity from molecular sequences. Mol. Biol. Evol. 2020, 37, 2414–2429.

[4]

Rahil, Z.; Leylek, R.; Schürch, C. M.; Chen, H.; Bjornson-Hooper, Z.; Christensen, S. R.; Gherardini, P. F.; Bhate, S. S.; Spitzer, M. H.; Fragiadakis, G. K. et al. Landscape of coordinated immune responses to H1N1 challenge in humans. J. Clin. Invest. 2020, 130, 5800–5816.

[5]

Chen, J. R.; Liu, Y. M.; Tseng, Y. C.; Ma, C. Better influenza vaccines: An industry perspective. J. Biomed. Sci. 2020, 27, 33.

[6]

Galli, C.; Orsi, A.; Pariani, E.; Lai, P. L.; Guarona, G.; Pellegrinelli, L.; Ebranati, E.; Icardi, G.; Panatto, D. In-depth phylogenetic analysis of the hemagglutinin gene of influenza A(H3N2) viruses circulating during the 2016–2017 season revealed egg-adaptive mutations of vaccine strains. Expert Rev. Vaccines 2020, 19, 115–122.

[7]

Subbarao, K.; Barr, I. A tale of two mutations: Beginning to understand the problems with egg-based influenza vaccines? Cell Host Microbe 2019, 25, 773–775.

[8]

Ping, J. H.; Lopes, T. J. S.; Nidom, C. A.; Ghedin, E.; Macken, C. A.; Fitch, A.; Imai, M.; Maher, E. A.; Neumann, G.; Kawaoka, Y. Development of high-yield influenza A virus vaccine viruses. Nat. Commun. 2015, 6, 8148.

[9]

Dinis, J. M.; Florek, K. R.; Fatola, O. O.; Moncla, L. H.; Mutschler, J. P.; Charlier, O. K.; Meece, J. K.; Belongia, E. A.; Friedrich, T. C. Deep sequencing reveals potential antigenic variants at low frequencies in influenza a virus-infected humans. J. Virol. 2016, 90, 3355–3365.

[10]

Morimoto, N.; Takeishi, K. Change in the efficacy of influenza vaccination after repeated inoculation under antigenic mismatch: A systematic review and meta-analysis. Vaccine 2018, 36, 949–957.

[11]

Zeigler, D. F.; Gage, E.; Clegg, C. H. Epitope-targeting platform for broadly protective influenza vaccines. PLoS One 2021, 16, e0252170.

[12]

Gschoesser, C.; Almanzar, G.; Hainz, U.; Ortin, J.; Schonitzer, D.; Schild, H.; Saurwein-Teissl, M.; Grubeck-Loebenstein, B. CD4+ and CD8+ mediated cellular immune response to recombinant influenza nucleoprotein. Vaccine 2002, 20, 3731–3738.

[13]

Kumar, A.; Meldgaard, T. S.; Bertholet, S. Novel platforms for the development of a universal influenza vaccine. Front. Immunol. 2018, 9, 600.

[14]

Kang, S. M.; Kim, M. C.; Compans, R. W. Virus-like particles as universal influenza vaccines. Expert Rev. Vaccines 2012, 11, 995–1007.

[15]

Schwartzman, L. M.; Cathcart, A. L.; Pujanauski, L. M.; Qi, L.; Kash, J. C.; Taubenberger, J. K. An intranasal virus-like particle vaccine broadly protects mice from multiple subtypes of influenza a virus. mBio 2015, 6, e01044.

[16]

Hu, C. M. J.; Chien, C. Y.; Liu, M. T.; Fang, Z. S.; Chang, S. Y.; Juang, R. H.; Chang, S. C.; Chen, H. W. Multi-antigen avian influenza a (H7N9) virus-like particles: Particulate characterizations and immunogenicity evaluation in murine and avian models. BMC Biotechnol. 2017, 17, 2.

[17]

Park, Y. C.; Song, J. M. Preparation and immunogenicity of influenza virus-like particles using nitrocellulose membrane filtration. Clin. Exp. Vaccine Res. 2017, 6, 61–66.

[18]

Gottlieb, T.; Ben-Yedidia, T. Epitope-based approaches to a universal influenza vaccine. J. Autoimmun. 2014, 54, 15–20.

[19]

Gong, X.; Yin, H.; Shi, Y. H.; Guan, S. S.; He, X. Q.; Yang, L.; Yu, Y. J.; Kuai, Z. Y.; Jiang, C. L.; Kong, W. et al. Conserved stem fragment from H3 influenza hemagglutinin elicits cross-clade neutralizing antibodies through stalk-targeted blocking of conformational change during membrane fusion. Immunol. Lett. 2016, 172, 11–20.

[20]

Gong, X.; Yin, H.; Shi, Y. H.; He, X. Q.; Yu, Y. J.; Guan, S. S.; Kuai, Z. Y.; Haji, N. M.; Haji, N. M.; Kong, W. et al. Evaluation of the immunogenicity and protective effects of a trivalent chimeric norovirus P particle immunogen displaying influenza HA2 from subtypes H1, H3 and B. Emerg. Microbes Infect. 2016, 5, 1–12.

[21]

Smith, L. R.; Wloch, M. K.; Ye, M.; Reyes, L. R.; Boutsaboualoy, S.; Dunne, C. E.; Chaplin, J. A.; Rusalov, D.; Rolland, A. P.; Fisher, C. L. et al. Phase 1 clinical trials of the safety and immunogenicity of adjuvanted plasmid DNA vaccines encoding influenza A virus H5 hemagglutinin. Vaccine 2010, 28, 2565–2572.

[22]

Qiao, Y. B.; Jin, S. H.; Nie, J. J.; Chang, Y. T.; Wang, B.; Guan, S. S.; Li, Q. H.; Shi, Y. H.; Kong, W.; Shan, Y. M. Hemagglutinin-based DNA vaccines containing trimeric self-assembling nanoparticles confer protection against influenza. J. Leukoc. Biol. 2022, 112, 547–556.

[23]

Bahl, K.; Senn, J. J.; Yuzhakov, O.; Bulychev, A.; Brito, L. A.; Hassett, K. J.; Laska, M. E.; Smith, M.; Almarsson, Ö.; Thompson, J. et al. Preclinical and clinical demonstration of immunogenicity by mRNA vaccines against H10N8 and H7N9 influenza viruses. Mol. Ther. 2017, 25, 1316–1327.

[24]

Hoelscher, M. A.; Garg, S.; Bangari, D. S.; Belser, J. A.; Lu, X. H.; Stephenson, I.; Bright, R. A.; Katz, J. M.; Mittal, S. K.; Sambhara, S. Development of adenoviral-vector-based pandemic influenza vaccine against antigenically distinct human H5N1 strains in mice. Lancet 2006, 367, 475–481.

[25]

Kim, E. H.; Han, G. Y.; Nguyen, H. An adenovirus-vectored influenza vaccine induces durable cross-protective hemagglutinin stalk antibody responses in mice. Viruses 2017, 9, 234.

[26]

Kamlangdee, A.; Kingstad-Bakke, B.; Anderson, T. K.; Goldberg, T. L.; Osorio, J. E. Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene. J. Virol. 2014, 88, 13300–13309.

[27]

Gurwith, M.; Lock, M.; Taylor, E. M.; Ishioka, G.; Alexander, J.; Mayall, T.; Ervin, J. E.; Greenberg, R. N.; Strout, C.; Treanor, J. J. et al. Safety and immunogenicity of an oral, replicating adenovirus serotype 4 vector vaccine for H5N1 influenza: A randomised, double-blind, placebo-controlled, phase 1 study. Lancet Infect. Dis. 2013, 13, 238–250.

[28]

Dhakal, S.; Loube, J.; Misplon, J. A.; Lo, C. Y.; Creisher, P. S.; Mulka, K. R.; Deshpande, S.; Mitzner, W.; Klein, S. L.; Epstein, S. L. Effect of an adenovirus-vectored universal influenza virus vaccine on pulmonary pathophysiology in a mouse model. J. Virol. 2021, 95, e02359–20.

[29]

Toussaint, N. C.; Kohlbacher, O. OptiTope—A web server for the selection of an optimal set of peptides for epitope-based vaccines. Nucleic Acids Res. 2009, 37, W617–W622.

[30]

Skwarczynski, M.; Toth, I. Peptide-based synthetic vaccines. Chem. Sci. 2016, 7, 842–854.

[31]

Thompson, C. P.; Lourenço, J.; Walters, A. A.; Obolski, U.; Edmans, M.; Palmer, D. S.; Kooblall, K.; Carnell, G. W.; O’Connor, D.; Bowden, T. A. et al. A naturally protective epitope of limited variability as an influenza vaccine target. Nat. Commun. 2018, 9, 3859.

[32]

Walls, A. C.; Fiala, B.; Schäfer, A.; Wrenn, S.; Pham, M. N.; Murphy, M.; Tse, L. V.; Shehata, L.; O’Connor, M. A.; Chen, C. B. et al. Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2. Cell 2020, 183, 1367–1382.e17.

[33]

Ko, C. N.; Zang, S. H.; Zhou, Y. T.; Zhong, Z. F.; Yang, C. Nanocarriers for effective delivery: Modulation of innate immunity for the management of infections and the associated complications. J. Nanobiotechnol. 2022, 20, 380.

[34]

Huang, X.; Kon, E.; Han, X.; Zhang, X.; Kong, N.; Mitchell, M. J.; Peer, D.; Tao, W. Nanotechnology-based strategies against SARS-CoV-2 variants. Nat. Nanotechnol. 2022, 17, 1027–1037.

[35]

Deng, L.; Wang, B. Z. A perspective on nanoparticle universal influenza vaccines. ACS Infect. Dis. 2018, 4, 1656–1665.

[36]

Sun, Y.; Guo, Y. Q.; Feng, X. J.; Fu, L.; Zheng, Y. Y.; Dong, Y.; Zhang, Y.; Yu, X. H.; Kong, W.; Wu, H. Norovirus P particle-based tau vaccine-generated phosphorylated tau antibodies markedly ameliorate tau pathology and improve behavioral deficits in mouse model of Alzheimer’s disease. Sig. Transduct. Target. Ther. 2021, 6, 61.

[37]

Ghorbani, A.; Ngunjiri, J. M.; Xia, M.; Elaish, M.; Jang, H.; Mahesh, K. C.; Abundo, M. C.; Jiang, X.; Lee, C. W. Heterosubtypic protection against avian influenza virus by live attenuated and chimeric norovirus P-particle-M2e vaccines in chickens. Vaccine 2019, 37, 1356–1364.

[38]

Jiang, L. P.; Fan, R. J.; Sun, S. Y.; Fan, P. H.; Su, W. H.; Zhou, Y.; Gao, F.; Xu, F.; Kong, W.; Jiang, C. L. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine 2015, 33, 6596–6603.

[39]

Tan, M.; Jiang, X. Norovirus P particle: A subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond) 2012, 7, 889–897.

[40]

Yu, Y. J.; Fu, L.; Shi, Y. H.; Guan, S. S.; Yang, L.; Gong, X.; Yin, H.; He, X. Q.; Liu, D. N.; Kuai, Z. Y. et al. Elicitation of HIV-1 neutralizing antibodies by presentation of 4E10 and 10E8 epitopes on norovirus P particles. Immunol. Lett. 2015, 168, 271–278.

[41]

Tan, M.; Huang, P. W.; Xia, M.; Fang, P. A.; Zhong, W. M.; McNeal, M.; Wei, C.; Jiang, W.; Jiang, X. Norovirus P particle, a novel platform for vaccine development and antibody production. J. Virol. 2011, 85, 753–764.

[42]

Horby, P. Improving preparedness for the next flu pandemic. Nat. Microbiol. 2018, 3, 848–850.

[43]

De Brito, R. C. F.; De O. Cardoso, J. M.; Reis, L. E. S.; Vieira, J. F.; Mathias, F. A. S.; Roatt, B. M.; Aguiar-Soares, R. D. D. O.; Ruiz, J. C.; De M. Resende, D.; Reis, A. B. Peptide vaccines for leishmaniasis. Front. Immunol. 2018, 9, 1043.

[44]

Yang, H.; Kim, D. S. Peptide immunotherapy in vaccine development: From epitope to adjuvant. Adv. Protein Chem. Struct. Biol. 2015, 99, 1–14.

[45]

Varypataki, E. M.; Silva, A. L.; Barnier-Quer, C.; Collin, N.; Ossendorp, F.; Jiskoot, W. Synthetic long peptide-based vaccine formulations for induction of cell mediated immunity: A comparative study of cationic liposomes and PLGA nanoparticles. J. Control. Release 2016, 226, 98–106.

[46]

Kang, Y. F.; Sun, C.; Zhuang, Z.; Yuan, R. Y.; Zheng, Q. B.; Li, J. P.; Zhou, P. P.; Chen, X. C.; Liu, Z.; Zhang, X. et al. Rapid development of SARS-CoV-2 spike protein receptor-binding domain self-assembled nanoparticle vaccine candidates. ACS Nano 2021, 15, 2738–2752.

[47]

Han, S. L.; Ma, W. Y.; Jiang, D. W.; Sutherlin, L.; Zhang, J.; Lu, Y.; Huo, N.; Chen, Z.; Engle, J. W.; Wang, Y. P. et al. Intracellular signaling pathway in dendritic cells and antigen transport pathway in vivo mediated by an OVA@DDAB/PLGA nano-vaccine. J. Nanobiotechnol. 2021, 19, 394.

[48]

Jones, K. L.; Pride, M. C.; Edmiston, E.; Yang, M.; Silverman, J. L.; Crawley, J. N.; Van De Water, J. Autism-specific maternal autoantibodies produce behavioral abnormalities in an endogenous antigen-driven mouse model of autism. Mol. Psychiatry 2020, 25, 2994–3009.

[49]

Schickli, J. H.; Whitacre, D. C.; Tang, R. S.; Kaur, J.; Lawlor, H.; Peters, C. J.; Jones, J. E.; Peterson, D. L.; McCarthy, M. P.; Van Nest, G. et al. Palivizumab epitope-displaying virus-like particles protect rodents from RSV challenge. J. Clin. Invest. 2015, 125, 1637–1647.

[50]

Molino, N. M.; Neek, M.; Tucker, J. A.; Nelson, E. L.; Wang, S. W. Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses. Biomaterials 2016, 86, 83–91.

[51]

Qi, M.; Zhang, X. E.; Sun, X. X.; Zhang, X. W.; Yao, Y. F.; Liu, S. L.; Chen, Z.; Li, W.; Zhang, Z. P.; Chen, J. J. et al. Intranasal nanovaccine confers homo- and hetero-subtypic influenza protection. Small 2018, 14, 1703207.

[52]

Qiao, Y. B.; Zhang, Y. X.; Chen, J.; Jin, S. H.; Shan, Y. M. A biepitope, adjuvant-free, self-assembled influenza nanovaccine provides cross-protection against H3N2 and H1N1 viruses in mice. Nano Res. 2022, 15, 8304–8314.

[53]

Zhao, G. Y.; Miao, Y.; Guo, Y.; Qiu, H. J.; Sun, S. H.; Kou, Z. H.; Yu, H.; Li, J. F.; Chen, Y.; Jiang, S. B. et al. Development of a heat-stable and orally delivered recombinant M2e-expressing B. subtilis spore-based influenza vaccine. Hum. Vaccin. Immunother. 2014, 10, 3649–3658.

[54]

Kang, S.; Kim, Y.; Shin, Y.; Song, J. J.; Jon, S. Antigen-presenting, self-assembled protein nanobarrels as an adjuvant-free vaccine platform against influenza virus. ACS Nano 2021, 15, 10722–10732.

[55]

Ackerman, M. E.; Das, J.; Pittala, S.; Broge, T.; Linde, C.; Suscovich, T. J.; Brown, E. P.; Bradley, T.; Natarajan, H.; Lin, S. et al. Route of immunization defines multiple mechanisms of vaccine-mediated protection against SIV. Nat. Med. 2018, 24, 1590–1598.

[56]

Schepens, B.; Sedeyn, K.; Vande Ginste, L.; De Baets, S.; Schotsaert, M.; Roose, K.; Houspie, L.; Van Ranst, M.; Gilbert, B.; Van Rooijen, N. et al. Protection and mechanism of action of a novel human respiratory syncytial virus vaccine candidate based on the extracellular domain of small hydrophobic protein. EMBO Mol. Med. 2014, 6, 1436–1454.

[57]

Bonduelle, O.; Carrat, F.; Luyt, C. E.; Leport, C.; Mosnier, A.; Benhabiles, N.; Krivine, A.; Rozenberg, F.; Yahia, N.; Samri, A. et al. Characterization of pandemic influenza immune memory signature after vaccination or infection. J. Clin. Invest. 2014, 124, 3129–3136.

[58]

Francis, J. N.; Bunce, C. J.; Horlock, C.; Watson, J. M.; Warrington, S. J.; Georges, B.; Brown, C. B. A novel peptide-based pan-influenza A vaccine: A double blind, randomised clinical trial of immunogenicity and safety. Vaccine 2015, 33, 396–402.

[59]

Pleguezuelos, O.; Robinson, S.; Fernandez, A.; Stoloff, G. A.; Caparrós-Wanderley, W. Meta-analysis and potential role of preexisting heterosubtypic cellular immunity based on variations in disease severity outcomes for influenza live viral challenges in humans. Clin. Vaccine Immunol. 2015, 22, 949–956.

[60]

Pleguezuelos, O.; Robinson, S.; Fernández, A.; Stoloff, G. A.; Mann, A.; Gilbert, A.; Balaratnam, G.; Wilkinson, T.; Lambkin-Williams, R.; Oxford, J. et al. A synthetic influenza virus vaccine induces a cellular immune response that correlates with reduction in symptomatology and virus shedding in a randomized phase Ib live-virus challenge in humans. Clin. Vaccine Immunol. 2015, 22, 828–835.

[61]

Phillipson, J. E.; Babecoff, R.; Ben-Yedidia, T. Is a universal influenza vaccine feasible? Adv. Vaccines Immunother. 2019, 7, 2515135519885547.

[62]

Van Doorn, E.; Liu, H.; Ben-Yedidia, T.; Hassin, S.; Visontai, I.; Norley, S.; Frijlink, H. W.; Hak, E. Evaluating the immunogenicity and safety of a BiondVax-developed universal influenza vaccine (Multimeric-001) either as a standalone vaccine or as a primer to H5N1 influenza vaccine: Phase IIb study protocol. Medicine (Baltimore) 2017, 96, e6339.

File
12274_2022_5395_MOESM1_ESM.pdf (249.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 October 2022
Revised: 04 December 2022
Accepted: 08 December 2022
Published: 16 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The current work was supported by the Department of Science and Technology of Jilin Province (Nos. 20220204008YY and 20210204197YY), and Changchun Science and Technology Bureau (No. 21ZY15).

Return