Journal Home > Volume 16 , Issue 5

Cancer-associated fibroblasts (CAFs) play an important role in facilitating the progression of triple-negative breast cancer (TNBC) by deteriorating the tumor mechanical microenvironment (TMME). Herein, we designed a CAFs-targeting nanomedicine by conjugating doxorubicin (DOX)-loaded hydroxyethyl starch-IR780 nanoparticles (NPs) with Cys-Arg-Glu-Lys-Ala (CREKA) peptide, which had a special affinity for fibronectin overexpressed on CAFs. After systemic administration, the NPs efficiently targeted CAFs and generated hyperthermia upon light irradiation, decreasing CAFs through the combination of chemo- and photothermal-therapies. Thus, a series of changes in TMME were achieved by reducing CAFs, which further disrupted the niche of cancer stem cells (CSCs) to affect their survival. As a result, the tumor growth was significantly inhibited in 4T1 tumors. The strategy of TMME modulation and CSCs elimination through targeting and depleting CAFs provides a novel therapeutic treatment for desmoplastic solid tumors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Targeting cancer-associated fibroblasts with hydroxyethyl starch nanomedicine boosts cancer therapy

Show Author's information Chong Wang1,§Huimin Wang1,§Hai Yang1,2,§Chen Xu1Qiang Wang1Zheng Li1Zhijie Zhang1Jiankun Guan1Ximiao Yu3Xiaoquan Yang3Xiangliang Yang1,2,4,5,7Zifu Li1,4,5,6,7( )
National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
GBA Research Innovation Institute for Nanotechnology, Guangzhou 510530, China
Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, China
Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, China
Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

§ Chong Wang, Huimin Wang, and Hai Yang contributed equally to this work.

Abstract

Cancer-associated fibroblasts (CAFs) play an important role in facilitating the progression of triple-negative breast cancer (TNBC) by deteriorating the tumor mechanical microenvironment (TMME). Herein, we designed a CAFs-targeting nanomedicine by conjugating doxorubicin (DOX)-loaded hydroxyethyl starch-IR780 nanoparticles (NPs) with Cys-Arg-Glu-Lys-Ala (CREKA) peptide, which had a special affinity for fibronectin overexpressed on CAFs. After systemic administration, the NPs efficiently targeted CAFs and generated hyperthermia upon light irradiation, decreasing CAFs through the combination of chemo- and photothermal-therapies. Thus, a series of changes in TMME were achieved by reducing CAFs, which further disrupted the niche of cancer stem cells (CSCs) to affect their survival. As a result, the tumor growth was significantly inhibited in 4T1 tumors. The strategy of TMME modulation and CSCs elimination through targeting and depleting CAFs provides a novel therapeutic treatment for desmoplastic solid tumors.

Keywords: combination therapy, cancer stem cells, hydroxyethyl starch, cancer-associated fibroblasts, tumor mechanical microenvironment

References(48)

[1]

Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer 2016, 16, 582–598.

[2]

Biffi, G.; Tuveson, D. A. Diversity and biology of cancer-associated fibroblasts. Physiol. Rev. 2021, 101, 147–176.

[3]

Hu, D. D.; Li, Z. Q.; Zheng, B.; Lin, X. X.; Pan, Y. H.; Gong, P. R.; Zhuo, W. Y.; Hu, Y. J.; Chen, C.; Chen, L. N. et al. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer. Commun. 2022, 42, 401–434.

[4]

Bulle, A.; Lim, K. H. Beyond just a tight fortress: Contribution of stroma to epithelial-mesenchymal transition in pancreatic cancer. Signal Transduct. Target. Ther. 2020, 5, 249.

[5]

Hyun, J.; Kim, H. W. Leveraging cellular mechano-responsiveness for cancer therapy. Trends Mol. Med. 2022, 28, 155–169.

[6]

Taddei, M. L.; Giannoni, E.; Comito, G.; Chiarugi, P. Microenvironment and tumor cell plasticity: An easy way out. Cancer Lett. 2013, 341, 80–96.

[7]

Nia, H. T.; Munn, L. L.; Jain, R. K. Physical traits of cancer. Science 2020, 370, eaaz0868.

[8]

Levental, K. R.; Yu, H. M.; Kass, L.; Lakins, J. N.; Egeblad, M.; Erler, J. T.; Fong, S. F. T.; Csiszar, K.; Giaccia, A.; Weninger, W. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 2009, 139, 891–906.

[9]

Tse, J. M.; Cheng, G.; Tyrrell, J. A.; Wilcox-Adelman, S. A.; Boucher, Y.; Jain, R. K.; Munn, L. L. Mechanical compression drives cancer cells toward invasive phenotype. Proc. Natl. Acad. Sci. USA 2012, 109, 911–916.

[10]

Stylianopoulos, T.; Jain, R. K. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc. Natl. Acad. Sci. USA 2013, 110, 18632–18637.

[11]

Stylianopoulos, T.; Munn, L. L.; Jain, R. K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: From mathematical modeling to bench to bedside. Trends Cancer 2018, 4, 292–319.

[12]

Su, S. C.; Chen, J. N.; Yao, H. R.; Liu, J.; Yu, S. B.; Lao, L. Y.; Wang, M. H.; Luo, M. L.; Xing, Y.; Chen, F. et al. CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 2018, 172, 841–856.e16.

[13]

Heddleston, J. M.; Li, Z.; Lathia, J. D.; Bao, S.; Hjelmeland, A. B.; Rich, J. N. Hypoxia inducible factors in cancer stem cells. Br. J. Cancer 2010, 102, 789–795.

[14]

De Andrés, J. L.; Griñán-Lisón, C.; Jiménez, G.; Marchal, J. A. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment. J. Hematol. Oncol. 2020, 13, 136.

[15]

Saygin, C.; Matei, D.; Majeti, R.; Reizes, O.; Lathia, J. D. Targeting cancer stemness in the clinic: From hype to hope. Cell Stem Cell 2019, 24, 25–40.

[16]

Clara, J. A.; Monge, C.; Yang, Y. Z.; Takebe, N. Targeting signalling pathways and the immune microenvironment of cancer stem cells—A clinical update. Nat. Rev. Clin. Oncol. 2020, 17, 204–232.

[17]

Yang, L. Q.; Shi, P. F.; Zhao, G. C.; Xu, J.; Peng, W.; Zhang, J. Y.; Zhang, G. H.; Wang, X. W.; Dong, Z.; Chen, F. et al. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct. Target. Ther. 2020, 5, 8.

[18]

Wu, F. L.; Yang, J.; Liu, J. J.; Wang, Y.; Mu, J. T.; Zeng, Q. X.; Deng, S. Z.; Zhou, H. M. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct. Target. Ther. 2021, 6, 218.

[19]

Chen, J. T.; Ding, Z. Y.; Li, S.; Liu, S.; Xiao, C.; Li, Z. F.; Zhang, B. X.; Chen, X. P.; Yang, X. L. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021, 11, 1345–1363.

[20]

Froeling, F. E. M.; Feig, C.; Chelala, C.; Dobson, R.; Mein, C. E.; Tuveson, D. A.; Clevers, H.; Hart, I. R.; Kocher, H. M. Retinoic acid-induced pancreatic stellate cell quiescence reduces paracrine Wnt-β-catenin signaling to slow tumor progression. Gastroenterology 2011, 141, 1486–1497.e14.

[21]

Wang, L. Y.; Liu, Z. M.; Zhou, Q.; Gu, S. F.; Liu, X. S.; Huang, J. X.; Jiang, H. P.; Wang, H. F.; Cao, L. P.; Sun, J. H. et al. Prodrug nanoparticles rationally integrating stroma modification and chemotherapy to treat metastatic pancreatic cancer. Biomaterials 2021, 278, 121176.

[22]

Zhou, S. Y.; Zhen, Z. P.; Paschall, A. V.; Xue, L. J.; Yang, X. Y.; Blackwell, A. G. B.; Cao, Z. W.; Zhang, W. Z.; Wang, M. Z.; Teng, Y. et al. FAP-targeted photodynamic therapy mediated by ferritin nanoparticles elicits an immune response against cancer cells and cancer associated fibroblasts. Adv. Funct. Mater. 2021, 31, 2007017.

[23]

Feng, J. X.; Xu, M. J.; Wang, J. H.; Zhou, S. L.; Liu, Y. P.; Liu, S. S.; Huang, Y. K.; Chen, Y.; Chen, L.; Song, Q. X. et al. Sequential delivery of nanoformulated α-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials 2020, 241, 119907.

[24]

Wu, H. L.; Hu, H.; Wan, J. L.; Li, Y. M.; Wu, Y. X.; Tang, Y. X.; Xiao, C.; Xu, H. B.; Yang, X. L.; Li, Z. F. Hydroxyethyl starch stabilized polydopamine nanoparticles for cancer chemotherapy. Chem. Eng. J. 2018, 349, 129–145.

[25]

Xiong, Y. X.; Wang, Z. B.; Wang, Q.; Deng, Q. Y.; Chen, J. T.; Wei, J. S.; Yang, X. Q.; Yang, X. L.; Li, Z. F. Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy. Theranostics 2022, 12, 944–962.

[26]

Wang, H. M.; Hu, H.; Yang, H.; Li, Z. F. Hydroxyethyl starch based smart nanomedicine. RSC Adv. 2021, 11, 3226–3240.

[27]

Xiao, C.; Hu, H.; Yang, H.; Li, S.; Zhou, H.; Ruan, J.; Zhu, Y. T.; Yang, X. L.; Li, Z. F. Colloidal hydroxyethyl starch for tumor-targeted platinum delivery. Nanoscale Adv. 2019, 1, 1002–1012.

[28]

Zhou, Q.; Li, Y. H.; Zhu, Y. H.; Yu, C.; Jia, H. B.; Bao, B. H.; Hu, H.; Xiao, C.; Zhang, J. Q.; Zeng, X. F. et al. Co-delivery nanoparticle to overcome metastasis promoted by insufficient chemotherapy. J. Control. Release 2018, 275, 67–77.

[29]

Hu, H.; Li, Y. H.; Zhou, Q.; Ao, Y. X.; Yu, C.; Wan, Y.; Xu, H. B.; Li, Z. F.; Yang, X. L. Redox-sensitive hydroxyethyl starch-doxorubicin conjugate for tumor targeted drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 30833–30844.

[30]

Luo, Q.; Wang, P. X.; Miao, Y. Q.; He, H. B.; Tang, X. A novel 5-fluorouracil prodrug using hydroxyethyl starch as a macromolecular carrier for sustained release. Carbohydr. Polym. 2012, 87, 2642–2647.

[31]

Hu, H.; Wan, J. L.; Huang, X. T.; Tang, Y. X.; Xiao, C.; Xu, H. B.; Yang, X. L.; Li, Z. F. iRGD-decorated reduction-responsive nanoclusters for targeted drug delivery. Nanoscale 2018, 10, 10514–10527.

[32]

Zhai, Y. H.; Liu, M.; Yang, T.; Luo, J.; Wei, C. G.; Shen, J. K.; Song, X.; Ke, H. T.; Sun, P.; Guo, M. et al. Self-activated arsenic manganite nanohybrids for visible and synergistic thermo/immuno-arsenotherapy. J. Control. Release 2022, 350, 761–776.

[33]

Iqbal, H.; Yang, T.; Li, T.; Zhang, M. Y.; Ke, H. T.; Ding, D. W.; Deng, Y. B.; Chen, H. B. Serum protein-based nanoparticles for cancer diagnosis and treatment. J. Control. Release 2021, 329, 997–1022.

[34]

Li, Y. H.; Wu, Y. X.; Chen, J. T.; Wan, J. L.; Xiao, C.; Guan, J. K.; Song, X. L.; Li, S. Y.; Zhang, M. M.; Cui, H. C. et al. A simple glutathione-responsive turn-on theranostic nanoparticle for dual-modal imaging and chemo-photothermal combination therapy. Nano Lett. 2019, 19, 5806–5817.

[35]

Wang, X. X.; Ye, N. B.; Xu, C.; Xiao, C.; Zhang, Z. J.; Deng, Q. Y.; Li, S. Y.; Li, J. Y.; Li, Z. F.; Yang, X. L. Hyperbaric oxygen regulates tumor mechanics and augments abraxane and gemcitabine antitumor effects against pancreatic ductal adenocarcinoma by inhibiting cancer-associated fibroblasts. Nano Today 2022, 44, 101458.

[36]

Liu, X.; Ye, N. B.; Xiao, C.; Wang, X. X.; Li, S. Y.; Deng, Y. H.; Yang, X. Q.; Li, Z. F.; Yang, X. L. Hyperbaric oxygen regulates tumor microenvironment and boosts commercialized nanomedicine delivery for potent eradication of cancer stem-like cells. Nano Today 2021, 40, 101248.

[37]

Zhao, Y.; Xie, R. S.; Yodsanit, N.; Ye, M. Z.; Wang, Y. Y.; Gong, S. Q. Biomimetic fibrin-targeted and H2O2-responsive nanocarriers for thrombus therapy. Nano Today 2020, 35, 100986.

[38]

Gong, Z. R.; Chen, M.; Ren, Q. S.; Yue, X. L.; Dai, Z. F. Fibronectin-targeted dual-acting micelles for combination therapy of metastatic breast cancer. Signal Transduct. Target. Ther. 2020, 5, 12.

[39]

Zhang, Z. J.; Deng, Q. Y.; Xiao, C.; Li, Z. F.; Yang, X. L. Rational design of nanotherapeutics based on the five features principle for potent elimination of cancer stem cells. Acc. Chem. Res. 2022, 55, 526–536.

[40]

Li, R.; Li, Y. P.; Zhang, J. H.; Liu, Q. H.; Wu, T.; Zhou, J.; Huang, H.; Tang, Q.; Huang, C. Y.; Huang, Y. et al. Targeted delivery of celastrol to renal interstitial myofibroblasts using fibronectin-binding liposomes attenuates renal fibrosis and reduces systemic toxicity. J. Control. Release 2020, 320, 32–44.

[41]

Chen, X. M.; Song, E. W. Turning foes to friends: Targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov. 2019, 18, 99–115.

[42]

Jain, R. K.; Martin, J. D.; Stylianopoulos, T. The role of mechanical forces in tumor growth and therapy. Annu. Rev. Biomed. Eng. 2014, 16, 321–346.

[43]

Nia, H. T.; Liu, H.; Seano, G.; Datta, M.; Jones, D.; Rahbari, N.; Incio, J.; Chauhan, V. P.; Jung, K.; Martin, J. D. et al. Solid stress and elastic energy as measures of tumour mechanopathology. Nat. Biomed. Eng. 2017, 1, 0004.

[44]

Mpekris, F.; Voutouri, C.; Baish, J. W.; Duda, D. G.; Munn, L. L.; Stylianopoulos, T.; Jain, R. K. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc. Natl. Acad. Sci. USA 2020, 117, 3728–3737.

[45]

Visvader, J. E.; Lindeman, G. J. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell 2012, 10, 717–728.

[46]

Hurtado, P.; Martínez-Pena, I.; Piñeiro, R. Dangerous liaisons: Circulating tumor cells (CTCs) and cancer-associated fibroblasts (CAFs). Cancers (Basel) 2020, 12, 2861.

[47]

Plaks, V.; Kong, N.; Werb, Z. The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015, 16, 225–238.

[48]

Khan, I. N.; Ullah, N.; Hussein, D.; Saini, K. S. Current and emerging biomarkers in tumors of the central nervous system: Possible diagnostic, prognostic and therapeutic applications. Semin. Cancer Biol. 2018, 52, 85–102.

File
12274_2022_5394_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 October 2022
Revised: 05 December 2022
Accepted: 08 December 2022
Published: 21 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank the Research Core Facilities for Life Science (HUST), the Optical Bioimaging Core Facility of WNLO-HUST, and the Analytical and Testing Center of HUST for the facility support. This work was financially supported by grants from the National Research and Development Program of China (Nos. 2018YFA0208900, 2020YFA0211200, and 2020YFA0710700), the National Natural Science Foundation of China (Nos. 82172757 and 31972927), the Scientific Research Foundation of Huazhong University of Science and Technology (No. 3004170130), the Program for HUST Academic Frontier Youth Team (No. 2018QYTD01), and the HCP Program for HUST.

Return