Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Most nanozyme research is limited to oxidase and peroxidase. Here, we reported the N, P, or S doped carbon nanotubes (CNTs) for enzyme mimics of nicotinamide adenine dinucleotide (NADH) oxidase and cytochrome c (Cyt c) reductase. Through the doping of N element, the NADH oxidase-like activity of CNTs is highly improved, and the maximum initial velocity for N doped CNT (N-CNT) is increased by 4.28 times compared to that before the modification. Through the analysis of NADH oxidation products, we found that biologically active NAD+ was produced, and the oxygen was selectively reduced to water or hydrogen peroxide, which is consistent with natural NADH oxidase. Furthermore, we found for the first time that carbon nanotubes can promote the transfer of electrons from NADH to Cyt c, thereby can mimic the properties of Cyt c reductase.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Feng, X. Y.; Song, Y.; Chen, J. S.; Xu, Z. W.; Dunn, S. J.; Lin, W. B. Rational construction of an artificial binuclear copper monooxygenase in a metal-organic framework. J. Am. Chem. Soc. 2021, 143, 1107–1118.
Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.
Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.
Yu, B.; Wang, W.; Sun, W. B.; Jiang, C. H.; Lu, L. H. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 2021, 143, 8855–8865.
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.
Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.
Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.
Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.
Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Lanthanide-boosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. ACS Nano 2019, 13, 14152–14161.
Singh, N.; Mugesh, G. CeVO4 nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species. Angew. Chem., Int. Ed. 2019, 58, 7797–7801.
Song, H. Y.; Ma, C. L.; Wang, L.; Zhu, Z. G. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: Characterization and applications. Nanoscale 2020, 12, 19284–19292.
Chen, M.; Wang, Z. H.; Shu, J. X.; Jiang, X. H.; Wang, W.; Shi, Z. H.; Lin, Y. W. Mimicking a natural enzyme system: Cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c. Inorg. Chem. 2017, 56, 9400–9403.
Wang, H.; Li, P. H.; Yu, D. Q.; Zhang, Y.; Wang, Z. Z.; Liu, C. Q.; Qiu, H.; Liu, Z.; Ren, J. S.; Qu, X. G. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018, 18, 3344–3351.
Negri, V.; Pacheco-Torres, J.; Calle, D.; López-Larrubia, P. Carbon nanotubes in biomedicine. Top. Curr. Chem. 2020, 378, 15.
Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem.—Eur. J. 2010, 16, 3617–3621.
He, Y. F.; Niu, X. H.; Shi, L. B.; Zhao, H. L.; Li, X.; Zhang, W. C.; Pan, J. M.; Zhang, X. F.; Yan, Y. S.; Lan, M. B. Photometric determination of free cholesterol via cholesterol oxidase and carbon nanotube supported Prussian blue as a peroxidase mimic. Microchim. Acta 2017, 184, 2181–2189.
Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.
Zhang, T.; Li, H. D.; Liu, M. X.; Zhou, H.; Zhang, Z. C.; Yu, C.; Wang, C. Y.; Wang, G. X. Improved the specificity of peroxidase-like carbonized polydopamine nanotubes with high nitrogen doping for glutathione detection. Sens. Actuat. B Chem. 2021, 341, 129987.
Zhang, Q.; He, X. X.; Han, A. L.; Tu, Q. X.; Fang, G. Z.; Liu, J. F.; Wang, S.; Li, H. B. Artificial hydrolase based on carbon nanotubes conjugated with peptides. Nanoscale 2016, 8, 16851–16856.
Hu, Y. H.; Gao, X. J.; Zhu, Y. Y.; Muhammad, F.; Tan, S. H.; Cao, W.; Lin, S. C.; Jin, Z.; Gao, X. F.; Wei, H. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater. 2018, 30, 6431–6439.
Lin, S. C.; Zhang, Y. H.; Cao, W.; Wang, X. Y.; Qin, L.; Zhou, M.; Wei, H. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalton Trans. 2019, 48, 1993–1999.
Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.
Wang, H.; Chen, J. X.; Dong, Q.; Jia, X. N.; Li, D.; Wang, J.; Wang, E. K. Cadmium sulfide as bifunctional mimics of NADH oxidase and cytochrome c reductase takes effect at physiological pH. Nano Res. 2022, 15, 5256–5261.
Li, W.; Jing, X. Y.; Ma, Y. S.; Chen, M. L.; Li, M. J.; Jiang, K.; Wang, D. H. Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery. Chem. Eng. J. 2021, 420, 129920.
Wu, W. W.; Wang, Q. Q.; Chen, J. X.; Huang, L.; Zhang, H.; Rong, K.; Dong, S. J. Biomimetic design for enhancing the peroxidase mimicking activity of hemin. Nanoscale 2019, 11, 12603–12609.
Xiong, W.; Wang, Z. N.; He, S. L.; Hao, F.; Yang, Y. Z.; Lv, Y.; Zhang, W. B.; Liu, P. L.; Luo, H. A. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation. Appl. Catal. B Environ. 2020, 260, 118105.
Zhao, Y.; Wang, L.; Huang, L. Y.; Maximov, M. Y.; Jin, M. L.; Zhang, Y. G.; Wang, X.; Zhou, G. F. Biomass-derived oxygen and nitrogen co-doped porous carbon with hierarchical architecture as sulfur hosts for high-performance lithium/sulfur batteries. Nanomaterials 2017, 7, 402.
Laudenbach, J.; Schmid, D.; Herziger, F.; Hennrich, F.; Kappes, M.; Muoth, M.; Haluska, M.; Hof, F.; Backes, C.; Hauke, F. et al. Diameter dependence of the defect-induced Raman modes in functionalized carbon nanotubes. Carbon 2017, 112, 1–7.
Wooten, M.; Gorski, W. Facilitation of NADH electro-oxidation at treated carbon nanotubes. Anal. Chem. 2010, 82, 1299–1304.
Sakamoto, M.; Uchimura, T.; Komagata, K. Comparison of H2O-forming NADH oxidase from Leuconostoc mesenteroides subsp. mesenteroides NRIC 1541T and H2O2-forming NADH oxidase from Sporolactobacillus inulinus NRIC 1133T. J. Fermen. Bioeng. 1996, 82, 531–537.
Wallen, J. R.; Mallett, T. C.; Okuno, T.; Parsonage, D.; Sakai, H.; Tsukihara, T.; Claiborne, A. Structural analysis of Streptococcus pyogenes NADH oxidase: Conformational dynamics involved in formation of the C(4a)-peroxyflavin intermediate. Biochemistry 2015, 54, 6815–6829.
Higuchi, M.; Yamamoto, Y.; Kamio, Y. Molecular biology of oxygen tolerance in lactic acid bacteria: Functions of NADH oxidases and Dpr in oxidative stress. J. Biosci. Bioeng. 2000, 90, 484–493.
Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13.
Starkov, A. A.; Fiskum, G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 2003, 86, 1101–1107.
Wan, J. M.; Kalpage, H. A.; Vaishnav, A.; Liu, J.; Lee, I.; Mahapatra, G.; Turner, A. A.; Zurek, M. P.; Ji, Q. Q.; Moraes, C. T. et al. Regulation of respiration and apoptosis by cytochrome c threonine 58 phosphorylation. Sci. Rep. 2019, 9, 15815.
Zhao, H. Z.; Du, Q.; Li, Z. S.; Yang, Q. Z. Mechanisms for the direct electron transfer of cytochrome c induced by multi-walled carbon nanotubes. Sensors 2012, 12, 10450–10462.