Journal Home > Volume 16 , Issue 5

Cu-based materials are seldom reported as oxygen evolution reaction (OER) electrocatalysts due to their inherent electron orbital configuration, which makes them difficult to adsorb oxygen-intermediates during OER. Reasonably engineering the hierarchical architectures and the electronic structures can improve the performance of Cu-based OER catalysts, such as constructing multilevel morphology, inducing the porous materials, improving the Cu valence, building heterostructures, doping heteroatoms, etc. In this work, copper-1,3,5-benzenetricarboxylate (HKUST-1) octahedra in-situ grow on the Cu nanorod (NR)-supported N-doped carbon microplates, meanwhile an active layer of Cu(OH)2 forms on the surface of the original conductive Cu NRs. The octahedral HKUST-1, serving as a spacer between the microplates, greatly improves the porosity and increases the available active sites, facilitating the mass transport and electron transfer, thus resulting in greatly enhanced OER performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A 3D hierarchical electrocatalyst: Core–shell Cu@Cu(OH)2 nanorods/MOF octahedra supported on N-doped carbon for oxygen evolution reaction

Show Author's information Xinran Li1,2Yipei Li2Changli Wang1Huaiguo Xue1Huan Pang1( )Qiang Xu1,2( )
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry, Department of Materials Science and Engineering and SUSTech Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China

Abstract

Cu-based materials are seldom reported as oxygen evolution reaction (OER) electrocatalysts due to their inherent electron orbital configuration, which makes them difficult to adsorb oxygen-intermediates during OER. Reasonably engineering the hierarchical architectures and the electronic structures can improve the performance of Cu-based OER catalysts, such as constructing multilevel morphology, inducing the porous materials, improving the Cu valence, building heterostructures, doping heteroatoms, etc. In this work, copper-1,3,5-benzenetricarboxylate (HKUST-1) octahedra in-situ grow on the Cu nanorod (NR)-supported N-doped carbon microplates, meanwhile an active layer of Cu(OH)2 forms on the surface of the original conductive Cu NRs. The octahedral HKUST-1, serving as a spacer between the microplates, greatly improves the porosity and increases the available active sites, facilitating the mass transport and electron transfer, thus resulting in greatly enhanced OER performance.

Keywords: oxygen evolution reaction, metal–organic framework, Cu@Cu(OH)2, core–shell nanorod

References(30)

[1]

Zhao, S. L.; Yang, Y. C.; Tang, Z. Y. Insight into structural evolution, active sites, and stability of heterogeneous electrocatalysts. Angew. Chem., Int. Ed. 2022, 61, e202110186.

[2]

Zeng, L. Y.; Zhao, Z. L.; Lv, F.; Xia, Z. H.; Lu, S. Y.; Li, J.; Sun, K. A.; Wang, K.; Sun, Y. J.; Huang, Q. Z. et al. Anti-dissolution Pt single site with Pt(OH)(O3)/Co(P) coordination for efficient alkaline water splitting electrolyzer. Nat. Commun. 2022, 13, 3822.

[3]

Yang, H.; Gong, L. Q.; Wang, H. M.; Dong, C. L.; Wang, J. L.; Qi, K.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075.

[4]

Tao, L.; Qiao, M.; Jin, R.; Li, Y.; Xiao, Z. H.; Wang, Y. Q.; Zhang, N. N.; Xie, C.; He, Q. G.; Jiang, D. C. et al. Bridging the surface charge and catalytic activity of a defective carbon electrocatalyst. Angew. Chem., Int. Ed. 2019, 58, 1019–1024.

[5]

He, J. Y.; Liu, Y. B.; Huang, Y. C.; Li, H.; Zou, Y. Q.; Dong, C. L.; Wang, S. Y. Fe2+-induced in situ intercalation and cation exsolution of Co80Fe20(OH)(OCH3) with rich vacancies for boosting oxygen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009245.

[6]

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

[7]

Hong, C. B.; Li, X. F.; Wei, W. B.; Wu, X. T.; Zhu, Q. L. Nano-engineering of Ru-based hierarchical porous nanoreactors for highly efficient pH-universal overall water splitting. Appl. Catal. B: Environ. 2021, 294, 120230.

[8]

Yao, Q.; Huang, B. L.; Zhang, N.; Sun, M. Z.; Shao, Q.; Huang, X. Q. Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 13983–13988.

[9]

Yue, K. H.; Liu, J. L.; Zhu, Y. T.; Xia, C. F.; Wang, P.; Zhang, J. W.; Kong, Y.; Wang, X. Y.; Yan, Y.; Xia, B. Y. In situ ion-exchange preparation and topological transformation of trimetal–organic frameworks for efficient electrocatalytic water oxidation. Energy Environ. Sci. 2021, 14, 6546–6553.

[10]

Zhang, Y. P.; Gao, F.; You, H. M.; Li, Z. L.; Zou, B.; Du, Y. K. Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord. Chem. Rev. 2022, 450, 214244.

[11]

Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

[12]

Shi, H.; Zhou, Y. T.; Yao, R. Q.; Wan, W. B.; Ge, X.; Zhang, W.; Wen, Z.; Lang, X. Y.; Zheng, W. T.; Jiang, Q. Spontaneously separated intermetallic Co3Mo from nanoporous copper as versatile electrocatalysts for highly efficient water splitting. Nat. Commun. 2020, 11, 2940.

[13]

Zhang, L. J.; Cai, W. W.; Bao, N. Z. Top-level design strategy to construct an advanced high-entropy Co-Cu-Fe-Mo (oxy)hydroxide electrocatalyst for the oxygen evolution reaction. Adv. Mater. 2021, 33, 2100745.

[14]

Long, C.; Han, J. Y.; Guo, J.; Yang, C. Y.; Liu, S. Q.; Tang, Z. Y. Operando toolbox for heterogeneous interface in electrocatalysis. Chem Catal. 2021, 1, 509–522.

[15]

Li, M. G.; Zhao, Z. L.; Xia, Z. H.; Luo, M. C.; Zhang, Q. H; Qin, Y. N.; Tao, L.; Yin, K.; Chao, Y. G.; Gu, L. et al. Exclusive strain effect boosts overall water splitting in PdCu/Ir core–shell nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 8243–8250.

[16]

Hou, J. G.; Sun, Y. Q.; Wu, Y. Z.; Cao, S. Y.; Sun, L. C. Promoting active sites in core–shell nanowire array as Mott–Schottky electrocatalysts for efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1704447.

[17]

Cheng, W. R.; Wu, Z. P.; Luan, D. Y.; Zang, S. Q.; Lou, X. W. Synergetic cobalt-copper-based bimetal–organic framework nanoboxes toward efficient electrochemical oxygen evolution. Angew. Chem., Int. Ed. 2021, 60, 26397–26402.

[18]

Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.

[19]

Zheng, X. B.; Yang, J. R.; Xu, Z. F.; Wang, Q. S.; Wu, J. B.; Zhang, E. H.; Dou, S. X.; Sun, W. P.; Wang, D. S.; Li, Y. D. Ru–Co pair sites catalyst boosts the energetics for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202205946.

[20]

Shan, J. Q.; Zheng, Y.; Shi, B. Y.; Davey, K.; Qiao, S. Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 2719–2730.

[21]

Cai, Z.; Li, L. D.; Zhang, Y. W.; Yang, Z.; Yang, J.; Guo, Y. J.; Guo, L. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem., Int. Ed. 2019, 58, 4189–4194.

[22]

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; García De Arquer, F. P.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal–organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

[23]

Wang, K. B.; Xun, Q.; Zhang, Q. C. Recent progress in metal–organic frameworks as active materials for supercapacitors. EnergyChem 2020, 2, 100025.

[24]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[25]

Li, X. R.; Wang, C. L.; Liu, Y. Y.; Xue, H. G.; Pang, H.; Xu, Q. Cu-alanine complex-derived CuO electrocatalysts with hierarchical nanostructures for efficient oxygen evolution. Chin. Chem. Lett. 2021, 32, 2239–2242.

[26]

Qin, Y. N.; Wang, Z. C.; Yu, W. H.; Sun, Y. J.; Wang, D.; Lai, J. P.; Guo, S. J.; Wang, L. High valence M-incorporated PdCu nanoparticles (M = Ir, Rh, Ru) for water electrolysis in alkaline solution. Nano Lett. 2021, 21, 5774–5781.

[27]

Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

[28]

Zhou, J.; Dou, Y. B.; Zhou, A. W.; Shu, L.; Chen, Y.; Li, J. R. Layered metal–organic framework-derived metal oxide/carbon nanosheet arrays for catalyzing the oxygen evolution reaction. ACS Energy Lett. 2018, 3, 1655–1661.

[29]

Yang, J.; Wang, C. D.; Ju, H. X.; Sun, Y.; Xing, S. Q.; Zhu, J. F.; Yang, Q. Integrated quasiplane heteronanostructures of MoSe2/Bi2Se3 hexagonal nanosheets: Synergetic electrocatalytic water splitting and enhanced supercapacitor performance. Adv. Funct. Mater. 2017, 27, 1703864.

[30]

Dai, J. L.; Zhao, D. K.; Sun, W. M.; Zhu, X. J.; Ma, L. J.; Wu, Z. X.; Yang, C. H.; Cui, Z. M.; Li, L. G.; Chen, S. W. Cu(II) ions induced structural transformation of cobalt selenides for remarkable enhancement in oxygen/hydrogen electrocatalysis. ACS Catal. 2019, 9, 10761–10772.

File
12274_2023_5389_MOESM1_ESM.pdf (1.8 MB)
12274_2023_5389_MOESM2_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 October 2022
Revised: 28 November 2022
Accepted: 03 December 2022
Published: 10 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. U1904215 and 21875207), the Natural Science Foundation of Jiangsu Province (No. BK20200044), and the Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM, No. ZDSYS20210709112802010).

Return