Journal Home > Volume 16 , Issue 4

Electrochemical NO reduction reaction (NORR) to generate NH3 emerges as a fascinating approach to achieve both NO pollution mitigation and sustainable NH3 synthesis. Herein, we demonstrate that single-atomic Cu anchored on MoS2 (Cu1/MoS2) comprising Cu1-S3 motifs can serve as a highly efficient NORR catalyst. Cu1/MoS2 exhibits an NH3 yield rate of 337.5 μmol·h−1·cm−2 with a Faradaic efficiency of 90.6% at −0.6 V vs. reversible hydrogen electrode (RHE). Combined experiments and theoretical calculations reveal that Cu1-S3 motifs enable the effective activation and hydrogenation of NO through a mixed pathway and simultaneously retard proton coverage, contributing to the high activity and selectivity of Cu1/MoS2 for the NORR.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrochemical NO reduction to NH3 on Cu single atom catalyst

Show Author's information Kai Chen1,§Guike Zhang1,§Xiaotian Li1Xiaolin Zhao2Ke Chu1( )
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China

§ Kai Chen and Guike Zhang contributed equally to this work.

Abstract

Electrochemical NO reduction reaction (NORR) to generate NH3 emerges as a fascinating approach to achieve both NO pollution mitigation and sustainable NH3 synthesis. Herein, we demonstrate that single-atomic Cu anchored on MoS2 (Cu1/MoS2) comprising Cu1-S3 motifs can serve as a highly efficient NORR catalyst. Cu1/MoS2 exhibits an NH3 yield rate of 337.5 μmol·h−1·cm−2 with a Faradaic efficiency of 90.6% at −0.6 V vs. reversible hydrogen electrode (RHE). Combined experiments and theoretical calculations reveal that Cu1-S3 motifs enable the effective activation and hydrogenation of NO through a mixed pathway and simultaneously retard proton coverage, contributing to the high activity and selectivity of Cu1/MoS2 for the NORR.

Keywords: theoretical calculations, electrochemical NO reduction to NH3, Cu single-atom catalyst

References(66)

[1]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[2]

Chu, K.; Li, X. C.; Li, Q. Q.; Guo, Y. L.; Zhang, H. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CTx-MXene. Small 2021, 17, 2102363.

[3]

Shen, H. D.; Choi, C.; Masa, J.; Li, X.; Qiu, J. S.; Jung, Y.; Sun, Z. Y. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. Chem 2021, 7, 1708–1754.

[4]

Zhao, X.; Li, X.; Zhang, H. B.; Chen, X.; Xu, J.; Yang, J.; Zhang, H. C.; Hu, G. Z. Atomic-dispersed copper simultaneously achieve high-efficiency removal and high-value-added conversion to ammonia of nitrate in sewage. J. Hazard. Mater. 2022, 424, 127319.

[5]

Zhao, X.; Hu, G. Z.; Tan, F.; Zhang, S. S.; Wang, X. Z.; Hu, X.; Kuklin, A. V.; Baryshnikov, G. V.; Ågren, H.; Zhou, X. H. et al. Copper confined in vesicle-like BCN cavities promotes electrochemical reduction of nitrate to ammonia in water. J. Mater. Chem. A 2021, 9, 23675–23686.

[6]

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electroche. 2021, 29, 100766.

[7]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[8]

Shen, P.; Li, X. C.; Luo, Y. J.; Guo, Y. L.; Zhao, X. L.; Chu, K. High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2−x in water-in-salt electrolytes. ACS Nano 2022, 16, 7915–7925.

[9]

Li, X. C.; Shen, P.; Luo, Y. J.; Li, Y. H.; Guo, Y. L.; Zhang, H.; Chu, K. PdFe single-atom alloy metallene for N2 electroreduction. Angew. Chem., Int. Ed. 2022, 134, e202205923.

[10]

Chu, K.; Liu, Y. P.; Chen, Y. H.; Li, Q. Q. Synergistic boron-dopants and boron-induced oxygen vacancies in MnO2 nanosheets to promote electrocatalytic nitrogen reduction. J. Mater. Chem. A 2020, 8, 5200–5208.

[11]

Luo, Y. J.; Chen, K.; Shen, P.; Li, X. C.; Li, X. T.; Li, Y. H.; Chu, K. B-doped MoS2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 950–957.

[12]

Shen, P.; Wang, G. H.; Chen, K.; Kang, J. L.; Ma, D. W.; Chu, K. Selenium-vacancy-rich WSe2 for nitrate electroreduction to ammonia. J. Colloid Interface Sci. 2023, 629, 563–570.

[13]

Luo, Y. J.; Li, Q. Q.; Tian, Y.; Liu, Y. P.; Chu, K. Amorphization engineered VSe2−x nanosheets with abundant Se-vacancies for enhanced N2 electroreduction. J. Mater. Chem. A 2022, 10, 1742–1749.

[14]

Wang, G. H.; Shen, P.; Luo, Y. J.; Li, X. T.; Li, X. C.; Chu, K. A vacancy engineered MnO2−x electrocatalyst promotes nitrate electroreduction to ammonia. Dalton Trans. 2022, 51, 9206–9212.

[15]

Zhang, G. K.; Li, X. C.; Shen, P.; Luo, Y. J.; Li, X. T.; Chu, K. PdNi nanosheets boost nitrate electroreduction to ammonia. J. Environ. Chem. Eng. 2022, 10, 108362.

[16]
Qin, Y. Y.; Li, Y.; Zhao, W. S.; Chen, S. H.; Wu, T. T.; Su, Y. Q. Computational study of transition metal single-atom catalysts supported on nitrogenated carbon nanotubes for electrocatalytic nitrogen reduction. Nano Res., in press, https://doi.org/10.1007/s12274-022-4803-7.
[17]
Lin, L. H.; Wei, F. F.; Jiang, R.; Huang, Y. C.; Lin, S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res., in press, https://doi.org/10.1007/s12274-022-4800-x.
[18]

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

[19]

Li, Y.; Wang, H. H.; Priest, C.; Li, S. W.; Xu, P.; Wu, G. Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions. Adv. Mater. 2021, 33, 2000381.

[20]

Yan, Z. H.; Ji, M. X.; Xia, J. X.; Zhu, H. Y. Recent advanced materials for electrochemical and photoelectrochemical synthesis of ammonia from dinitrogen: One step closer to a sustainable energy future. Adv. Energy Mater. 2020, 10, 1902020.

[21]

Shen, P.; Li, X. T.; Luo, Y. J.; Zhang, N. N.; Zhao, X. L.; Chu, K. Ultra-efficient N2 electroreduction achieved over a rhodium single-atom catalyst (Rh1/MnO2) in water-in-salt electrolyte. Appl. Catal. B 2022, 316, 121651.

[22]

Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3−x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

[23]

Chu, K.; Li, X. C.; Tian, Y.; Li, Q. Q.; Guo, Y. L. Boron nitride quantum dots/Ti3C2Tx-MXene heterostructure for efficient electrocatalytic nitrogen fixation. Energy Environ. Mater. 2022, 5, 1303–1309.

[24]

Li, X. C.; Luo, Y. J.; Li, Q. Q.; Guo, Y. L.; Chu, K. Constructing an electron-rich interface over an Sb/Nb2CTx-MXene heterojunction for enhanced electrocatalytic nitrogen reduction. J. Mater. Chem. A 2021, 9, 15955–15962.

[25]

Chu, K.; Wang, J.; Liu, Y. P.; Li, Q. Q.; Guo, Y. L. Mo-doped SnS2 with enriched S-vacancies for highly efficient electrocatalytic N2 reduction: The critical role of the Mo-Sn-Sn trimer. J. Mater. Chem. A 2020, 8, 7117–7124.

[26]

Xiong, Y. H.; Li, Y. T.; Wan, S. P.; Yu, Y.; Zhang, S. L.; Zhong, Q. Ferrous-based electrolyte for simultaneous NO absorption and electroreduction to NH3 using Au/rGO electrode. J. Hazard. Mater. 2022, 430, 128451.

[27]

Li, Y. B.; Cheng, C. Q.; Han, S. H.; Huang, Y. M.; Du, X. W.; Zhang, B.; Yu, Y. F. Electrocatalytic reduction of low-concentration nitric oxide into ammonia over Ru nanosheets. ACS Energy Lett. 2022, 7, 1187–1194.

[28]

Ko, B. H.; Hasa, B.; Shin, H.; Zhao, Y. R.; Jiao, F. Electrochemical reduction of gaseous nitrogen oxides on transition metals at ambient conditions. J. Am. Chem. Soc. 2022, 144, 1258–1266.

[29]

Long, J.; Chen, S. M.; Zhang, Y. L.; Guo, C. X.; Fu, X. Y.; Deng, D. H.; Xiao, J. P. Direct electrochemical ammonia synthesis from nitric oxide. Angew. Chem., Int. Ed. 2020, 59, 9711–9718.

[30]

Li, X. T.; Chen, K.; Lu, X. B.; Ma, D. W.; Chu, K. Atomically dispersed Co catalyst for electrocatalytic NO reduction to NH3. Chem. Eng. J. 2023, 454, 140333.

[31]

Liang, J.; Liu, P. Y.; Li, Q. Y.; Li, T. S.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Tang, B.; Alshehri, A. A. et al. Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3. Angew. Chem., Int. Ed. 2022, 61, e202202087.

[32]

Liang, J.; Hu, W. F.; Song, B. Y.; Mou, T.; Zhang, L. C.; Luo, Y. S.; Liu, Q.; Alshehri, A. A.; Hamdy, M. S.; Yang, L. M. et al. Efficient nitric oxide electroreduction toward ambient ammonia synthesis catalyzed by a CoP nanoarray. Inorg. Chem. Front. 2022, 9, 1366–1372.

[33]

Liang, J.; Chen, H. Y.; Mou, T.; Zhang, L. C.; Lin, Y. T.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Li, N.; Alshehri, A. A. et al. Coupling denitrification and ammonia synthesis via selective electrochemical reduction of nitric oxide over Fe2O3 nanorods. J. Mater. Chem. A 2022, 10, 6454–6462.

[34]

Zhang, L. C.; Liang, J.; Wang, Y. Y.; Mou, T.; Lin, Y. T.; Yue, L. C.; Li, T. S.; Liu, Q.; Luo, Y. L.; Li, N. et al. High-performance electrochemical NO reduction into NH3 by MoS2 nanosheet. Angew. Chem., Int. Ed. 2021, 60, 25263–25268.

[35]

Meng, G.; Jin, M. M.; Wei, T. R.; Liu, Q.; Zhang, S. S.; Peng, X. Y.; Luo, J.; Liu, X. J. MoC nanocrystals confined in N-doped carbon nanosheets toward highly selective electrocatalytic nitric oxide reduction to ammonia. Nano Res. 2022, 15, 8890–8896.

[36]

Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma, D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy 2022, 1, e9120022.

[37]

Chen, K.; Wang, J. X.; Kang, J. L.; Lu, X. B.; Zhao, X. L.; Chu, K. Atomically Fe-doped MoS2−x with Fe-Mo dual sites for efficient electrocatalytic NO reduction to NH3. Appl. Catal. B 2023, 324, 122241.

[38]
Li, X. T.; Zhang, G. K.; Shen, P.; Zhao, X. L.; Chu, K. A defect engineered p-block SnS2−x catalyst for efficient electrocatalytic NO reduction to NH3. Inorg. Chem. Front., in press, https://doi.org/10.1039/d2qi02118h.
[39]

Chen, L.; Sun, W. T.; Xu, Z. Y.; Hao, M. H.; Li, B. J.; Liu, X.; Ma, J. J.; Wang, L.; Li, C. H.; Wang, W. T. Ultrafine Cu nanoparticles decorated porous TiO2 for high-efficient electrocatalytic reduction of NO to synthesize NH3. Ceram. Int. 2022, 48, 21151–21161.

[40]

Shi, J. W.; Wang, C. H.; Yang, R.; Chen, F. P.; Meng, N. N.; Yu, Y. F.; Zhang, B. Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Sci. China Chem. 2021, 64, 1493–1497.

[41]

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Heterogeneous single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

[42]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[43]

Peng, X. Y.; Mi, Y. Y.; Bao, H. H.; Liu, Y. F.; Qi, D. F.; Qiu, Y.; Zhuo, L. C.; Zhao, S. Z.; Sun, J. Q.; Tang, X. L. et al. Ambient electrosynthesis of ammonia with efficient denitration. Nano Energy 2020, 78, 105321.

[44]

Bao, H. H.; Qiu, Y.; Peng, X. Y.; Wang, J. A.; Mi, Y. Y.; Zhao, S. Z.; Liu, X. J.; Liu, Y. F.; Cao, R.; Zhuo, L. C. et al. Isolated copper single sites for high-performance electroreduction of carbon monoxide to multicarbon products. Nat. Commun. 2021, 12, 238.

[45]

Xu, H. B.; Jia, H. X.; Li, H. Z.; Liu, J.; Gao, X. W.; Zhang, J. C.; Liu, M.; Sun, D. L.; Chou, S. L.; Fang, F. et al. Dual carbon-hosted Co-N3 enabling unusual reaction pathway for efficient oxygen reduction reaction. Appl. Catal. B 2021, 297, 120390.

[46]

Zang, W. J.; Sun, T.; Yang, T.; Xi, S. B.; Waqar, M.; Kou, Z. K.; Lyu, Z.; Feng, Y. P.; Wang, J.; Pennycook, S. J. Efficient hydrogen evolution of oxidized Ni-N3 defective sites for alkaline freshwater and seawater electrolysis. Adv. Mater. 2021, 33, 2003846.

[47]

Li, J.; Chen, S.; Quan, F. J.; Zhan, G. M.; Jia, F. L.; Ai, Z. H.; Zhang, L. Z. Accelerated dinitrogen electroreduction to ammonia via interfacial polarization triggered by single-atom protrusions. Chem 2020, 6, 885–901.

[48]

Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3−x/MXene for N2 electroreduction to NH3. Adv. Energy Mater. 2022, 12, 2103022.

[49]

Li, Q. Q.; Shen, P.; Tian, Y.; Li, X. C.; Chu, K. Metal-free BN quantum dots/graphitic C3N4 heterostructure for nitrogen reduction reaction. J. Colloid Interface Sci. 2022, 606, 204–212.

[50]

Chu, K.; Liu, Y. P.; Li, Y. B.; Wang, J.; Zhang, H. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806–31815.

[51]

Zhang, L. C.; Liang, J.; Yue, L. C.; Dong, K.; Li, J.; Zhao, D. L.; Li, Z. R.; Sun, S. J.; Luo, Y. S.; Liu, Q. et al. Benzoate anions-intercalated NiFe-layered double hydroxide nanosheet array with enhanced stability for electrochemical seawater oxidation. Nano Res. Energy 2022, 1, e9120028.

[52]

Safaei, J.; Wang, G. X. Progress and prospects of two-dimensional materials for membrane-based osmotic power generation. Nano Res. Energy 2022, 1, e9120008.

[53]

Gao, F.; He, J. Q.; Wang, H. W.; Lin, J. H.; Chen, R. X.; Yi, K.; Huang, F.; Lin, Z.; Wang, M. Y. Te-mediated electro-driven oxygen evolution reaction. Nano Res. Energy 2022, 1, e9120029.

[54]

Chen, K.; Luo, Y. J.; Shen, P.; Liu, X. X.; Li, X. C.; Li, X. T.; Chu, K. Boosted nitrate electroreduction to ammonia on Fe-doped SnS2 nanosheet arrays rich in S-vacancies. Dalton Trans. 2022, 51, 10343–10350.

[55]

Li, Q. Q.; Wang, J.; Cheng, Y. H.; Chu, K. Zn nanosheets: An earth-abundant metallic catalyst for efficient electrochemical ammonia synthesis. J. Energy Chem. 2021, 54, 318–322.

[56]

Li, Q. Q.; Guo, Y. L.; Tian, Y.; Liu, W. M.; Chu, K. Activating VS2 basal planes for enhanced NRR electrocatalysis: The synergistic role of S-vacancies and B dopants. J. Mater. Chem. A 2020, 8, 16195–16202.

[57]

Liu, Q.; Lin, Y. T.; Yue, L. C.; Liang, J.; Zhang, L. C.; Li, T. S.; Luo, Y. S.; Liu, M. L.; You, J. M.; Alshehri, A. A. et al. Bi nanoparticles/carbon nanosheet composite: A high-efficiency electrocatalyst for NO reduction to NH3. Nano Res. 2022, 15, 5032–5037.

[58]

Liang, J.; Zhou, Q.; Mou, T.; Chen, H. Y.; Yue, L. C.; Luo, Y. S.; Liu, Q.; Hamdy, M. S.; Alshehri, A. A.; Gong, F. et al. FeP nanorod array: A high-efficiency catalyst for electroreduction of NO to NH3 under ambient conditions. Nano Res. 2022, 15, 4008–4013.

[59]

Chu, K.; Cheng, Y. H.; Li, Q. Q.; Liu, Y. P.; Tian, Y. Fe-doping induced morphological changes, oxygen vacancies and Ce3+–Ce3+ pairs in CeO2 for promoting electrocatalytic nitrogen fixation. J. Mater. Chem. A 2020, 8, 5865–5873.

[60]

Chu, K.; Liu, Y. P.; Li, Y. B.; Guo, Y. L.; Tian, Y. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2020, 12, 7081–7090.

[61]

Chu, K.; Li, Q. Q.; Cheng, Y. H.; Liu, Y. P. Efficient electrocatalytic nitrogen fixation on FeMoO4 nanorods. ACS Appl. Mater. Interfaces 2020, 12, 11789–11796.

[62]

Chu, K.; Liu, Y. P.; Li, Y. B.; Zhang, H.; Tian, Y. Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A 2019, 7, 4389–4394.

[63]
Cheng, Y. H.; Li, X. C.; Shen, P.; Guo, Y. L.; Chu, K. MXene quantum dots/copper nanocomposites for synergistically enhanced N2 electroreduction. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12268.
[64]

Lv, P.; Wu, D. H.; He, B. L.; Li, X.; Zhu, R.; Tang, G.; Lu, Z. S.; Ma, D. W.; Jia, Y. An efficient screening strategy towards multifunctional catalysts for the simultaneous electroreduction of NO3, NO2 and NO to NH3. J. Mater. Chem. A 2022, 10, 9707–9716.

[65]

Wang, Y. Y.; Wang, M. R.; Lu, Z. S.; Ma, D. W.; Jia, Y. Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T'-MoS2 with anchored transition metal single atoms. Nanoscale 2021, 13, 13390–13400.

[66]

He, B. L.; Lv, P.; Wu, D. H.; Li, X.; Zhu, R.; Chu, K.; Ma, D. W.; Jia, Y. Confinement catalysis of a single atomic vacancy assisted by aliovalent ion doping enabled efficient NO electroreduction to NH3. J. Mater. Chem. A 2022, 10, 18690–18700.

File
12274_2023_5384_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 October 2022
Revised: 02 December 2022
Accepted: 04 December 2022
Published: 23 December 2022
Issue date: April 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 52161025) and Fundamental Researches Top Talent Program of Lanzhou Jiaotong University (No. 2022JC03).

Return