Journal Home > Volume 16 , Issue 5

Chiral perovskites (CPs) have attracted enormous attentions since they have combined chirality and optoelectrical properties well which is promising in circularly polarized luminescence (CPL) application and of great importance for future spin-optoelectronics. However, there is a key contradiction that in chiral perovskites chirality distorts the crystal structure, leading to poor photoluminescence (PL) properties. Achieving the balance between chirality and PL is a major challenge for strong CPL from chiral perovskites. Differently, two-dimensional (2D) chiral perovskite has shown fascinating chiral induced spin selectivity (CISS) effect which can act as spin injector under ambient conditions. Here, we propose an effective strategy to achieve high CPL activity generated from quantum dots (QDs) by introducing 2D chiral perovskite as a chiral source, providing spin polarized carriers through the CISS effect. The as-synthesized QDs/CP composites exhibit dissymmetry factors (glum) up to 9.06 × 10−3. For the first time, we performed grazing incident wide angle X-ray scattering (GIWAXS) measurements, showing the chirality originates from the distorted lattices caused by the large chiral organic cations. Besides, time-resolved PL (TR-PL) measurements verify the enhanced CPL activity should be attributed to the charge transport between two components. These findings provide a useful method to achieve CPL in QDs/2D chiral perovskite heterojunctions which could be promising in spin-optoelectronics application.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Strong circularly polarized luminescence from quantum dots/2D chiral perovskites composites

Show Author's information Qingqian Wang1,§Hongmei Zhu1,§Wei Chen2Junjie Hao1Zhaojin Wang1Jun Tang3Yingguo Yang4Xiao Wei Sun1Dan Wu3( )Kai Wang1( )
Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China
Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China

§ Qingqian Wang and Hongmei Zhu contributed equally to this work.

Abstract

Chiral perovskites (CPs) have attracted enormous attentions since they have combined chirality and optoelectrical properties well which is promising in circularly polarized luminescence (CPL) application and of great importance for future spin-optoelectronics. However, there is a key contradiction that in chiral perovskites chirality distorts the crystal structure, leading to poor photoluminescence (PL) properties. Achieving the balance between chirality and PL is a major challenge for strong CPL from chiral perovskites. Differently, two-dimensional (2D) chiral perovskite has shown fascinating chiral induced spin selectivity (CISS) effect which can act as spin injector under ambient conditions. Here, we propose an effective strategy to achieve high CPL activity generated from quantum dots (QDs) by introducing 2D chiral perovskite as a chiral source, providing spin polarized carriers through the CISS effect. The as-synthesized QDs/CP composites exhibit dissymmetry factors (glum) up to 9.06 × 10−3. For the first time, we performed grazing incident wide angle X-ray scattering (GIWAXS) measurements, showing the chirality originates from the distorted lattices caused by the large chiral organic cations. Besides, time-resolved PL (TR-PL) measurements verify the enhanced CPL activity should be attributed to the charge transport between two components. These findings provide a useful method to achieve CPL in QDs/2D chiral perovskite heterojunctions which could be promising in spin-optoelectronics application.

Keywords: colloidal quantum dots, circularly polarized luminescence, chiral induced spin selectivity, two-dimensional (2D) chiral perovskites, grazing incident wide angle X-ray scattering (GIWAXS)

References(35)

[1]

Morrow, S. M.; Bissette, A. J.; Fletcher, S. P. Transmission of chirality through space and across length scales. Nat. Nanotech. 2017, 12, 410–419.

[2]

Cheng, J. J.; Hao, J. J.; Liu, H. C.; Li, J. G.; Li, J. Z.; Zhu, X.; Lin, X. D.; Wang, K.; He, T. C. Optically active CdSe-dot/CdS-rod nanocrystals with induced chirality and circularly polarized luminescence. ACS Nano 2018, 12, 5341–5350.

[3]

Hao, J.; Zhao, F. H.; Wang, Q. S.; Lin, J. Y.; Chen, P. X.; Li, J. Z.; Zhang, D. X.; Chen, M. J.; Liu, P. Z.; Delville, M. H. et al. Optically active CdSe/CdS nanoplatelets exhibiting both circular dichroism and circularly polarized luminescence. Adv. Opt. Mater. 2021, 9, 2101142.

[4]

Yang, X. F.; Jin, X.; Zhao, T. H.; Duan, P. F. Circularly polarized luminescence in chiral nematic liquid crystals: Generation and amplification. Mater. Chem. Front. 2021, 5, 4821–4832.

[5]

Jin, X.; Zhou, M. H.; Han, J. L.; Li, B.; Zhang, T. Y.; Jiang, S.; Duan, P. F. A new strategy to achieve enhanced upconverted circularly polarized luminescence in chiral perovskite nanocrystals. Nano Res. 2021, 15, 1047–1053.

[6]

Lu, H. P.; Wang, J. Y.; Xiao, C. X.; Pan, X.; Chen, X. H.; Brunecky, R.; Berry, J. J.; Zhu, K.; Beard, M. C.; Vardeny, Z. V. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 2019, 5, eaay0571.

[7]

Lu, H. P.; Xiao, C. X.; Song, R. Y.; Li, T. Y.; Maughan, A. E.; Levin, A.; Brunecky, R.; Berry, J. J.; Mitzi, D. B.; Blum, V. et al. Highly distorted chiral two-dimensional tin iodide perovskites for spin polarized charge transport. J. Am. Chem. Soc. 2020, 142, 13030–13040.

[8]

Wei, Q.; Ning, Z. J. Chiral perovskite spin-optoelectronics and spintronics: Toward judicious design and application. ACS Materials Lett. 2021, 3, 1266–1275.

[9]

Ma, J. Q.; Wang, H. Z.; Li, D. H. Recent progress of chiral perovskites: Materials, synthesis, and properties. Adv. Mater. 2021, 33, 2008785.

[10]

Ma, S.; Ahn, J.; Moon, J. Chiral perovskites for next-generation photonics: From chirality transfer to chiroptical activity. Adv. Mater. 2021, 33, 2005760.

[11]

Dang, Y. Y.; Liu, X. L.; Cao, B. Q.; Tao, X. T. Chiral halide perovskite crystals for optoelectronic applications. Matter 2021, 4, 794–820.

[12]

Long, G. K.; Sabatini, R.; Saidaminov, M. I.; Lakhwani, G.; Rasmita, A.; Liu, X. G.; Sargent, E. H.; Gao, W. B. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 2020, 5, 423–439.

[13]

Long, G. K.; Jiang, C. Y.; Sabatini, R.; Yang, Z. Y.; Wei, M. Y.; Quan, L. N.; Liang, Q. M.; Rasmita, A.; Askerka, M.; Walters, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 2018, 12, 528–533.

[14]

Ahn, J.; Lee, E.; Tan, J.; Yang, W.; Kim, B.; Moon, J. A new class of chiral semiconductors: Chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 2017, 4, 851–856.

[15]

He, T. C.; Li, J. Z.; Li, X. R.; Ren, C.; Luo, Y.; Zhao, F. H.; Chen, R.; Lin, X. D.; Zhang, J. M. Spectroscopic studies of chiral perovskite nanocrystals. Appl. Phys. Lett. 2017, 111, 151102.

[16]

Chen, C.; Gao, L.; Gao, W. R.; Ge, C.; Du, X. Y.; Li, Z.; Yang, Y.; Niu, G. D.; Tang, J. Circularly polarized light detection using chiral hybrid perovskite. Nat. Commun. 2019, 10, 1927.

[17]

Ishii, A.; Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode. Sci. Adv. 2020, 6, eabd3274.

[18]

Dang, Y. Y.; Liu, X. L.; Sun, Y. J.; Song, J. W.; Hu, W. P.; Tao, X. T. Bulk chiral halide perovskite single crystals for active circular dichroism and circularly polarized luminescence. J. Phys. Chem. Lett. 2020, 11, 1689–1696.

[19]

Di Nuzzo, D.; Cui, L. S.; Greenfield, J. L.; Zhao, B. D.; Friend, R. H.; Meskers, S. C. J. Circularly polarized photoluminescence from chiral perovskite thin films at room temperature. ACS Nano 2020, 14, 7610–7616.

[20]

Liu, Y. L.; Wang, C.; Guo, Y. R.; Ma, L. L.; Zhou, C. Y.; Liu, Y.; Zhu, L. N.; Li, X. Z.; Zhang, M. X.; Zhao, G. J. New lead bromide chiral perovskites with ultra-broadband white-light emission. J. Mater. Chem. C 2020, 8, 5673–5680.

[21]

Lin, J. T.; Chen, D. G.; Yang, L. S.; Lin, T. C.; Liu, Y. H.; Chao, Y. C.; Chou, P. T.; Chiu, C. W. Tuning the circular dichroism and circular polarized luminescence intensities of chiral 2D hybrid organic–inorganic perovskites through halogenation of the organic ions. Angew. Chem., Int. Ed. 2021, 60, 21434–21440.

[22]

Ray, K.; Ananthavel, S. P.; Waldeck, D. H.; Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 1999, 283, 814–816.

[23]

Naaman, R.; Paltiel, Y.; Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 2019, 3, 250–260.

[24]

Naaman, R.; Paltiel, Y.; Waldeck, D. H. Chiral induced spin selectivity gives a new twist on spin-control in chemistry. Acc. Chem. Res. 2020, 53, 2659–2667.

[25]

Kim, Y. H.; Zhai, Y. X.; Lu, H. P.; Pan, X.; Xiao, C. X.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 2021, 371, 1129–1133.

[26]

Lu, Y.; Wang, Q.; Chen, R. Y.; Qiao, L. L.; Zhou, F. X.; Yang, X.; Wang, D.; Cao, H.; He, W. L.; Pan, F. et al. Spin-dependent charge transport in 1D chiral hybrid lead–bromide perovskite with high stability. Adv. Funct. Mater. 2021, 31, 2104605.

[27]

Billing, D. G.; Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 2006, 8, 686–695.

[28]

Ben-Moshe, A.; Teitelboim, A.; Oron, D.; Markovich, G. Probing the interaction of quantum dots with chiral capping molecules using circular dichroism spectroscopy. Nano Lett. 2016, 16, 7467–7473.

[29]

Georgieva, Z. N.; Bloom, B. P.; Ghosh, S.; Waldeck, D. H. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater. 2018, 30, 1800097.

[30]
Nordén, B.; Rodger, A.; Dafforn, T. Linear Dichroism and Circular Dichroism: A Textbook on Polarized-Light Spectroscopy; Royal Society of Chemistry: Cambridge, 2010.
[31]

Longhi, G.; Castiglioni, E.; Koshoubu, J.; Mazzeo, G.; Abbate, S. Circularly polarized luminescence: A review of experimental and theoretical aspects. Chirality 2016, 28, 696–707.

[32]

Michaeli, K.; Kantor-Uriel, N.; Naaman, R.; Waldeck, D. H. The electron’s spin and molecular chirality—How are they related and how do they affect life processes? Chem. Soc. Rev. 2016, 45, 6478–6487.

[33]

Li, X. P.; Nan, J.; Pan, X. C. Chiral induced spin selectivity as a spontaneous intertwined order. Phys. Rev. Lett. 2020, 125, 263002.

[34]

Ye, C. Y.; Jiang, J. W.; Zou, S. L.; Mi, W. B.; Xiao, Y. Core–shell three-dimensional perovskite nanocrystals with chiral-induced spin selectivity for room-temperature spin light-emitting diodes. J. Am. Chem. Soc. 2022, 144, 9707–9714.

[35]

Naaman, R.; Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 2012, 3, 2178–2187.

File
12274_2023_5380_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 September 2022
Revised: 15 November 2022
Accepted: 04 December 2022
Published: 21 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by Guangdong Basic and Applied Basic Research Foundation (Nos. 2022A1515011071, 2019A1515111093, and 2022A1515011614), the National Natural Science Foundation of China (Nos. 62122034, 61875082, 61905107, 62204107, and 62205138), Innovation Project of Department of Education of Guangdong Province (No. 2019KTSCX157), and Shenzhen Innovation Project (Nos. JCYJ20210324104413036 and JCYJ20190809152411655). Q. Q. W. and H. M. Z. acknowledge the support from China Postdoctoral Science Foundation (Nos. 2021M691397 and 2021M691411). The authors acknowledge Shanghai Synchrotron Radiation Facility for the GIWAXS measurements. The authors acknowledge Shiyanjia Lab (www.shiyanjia.com) for the UPS and TAS experiments.

Return