Journal Home > Volume 16 , Issue 6

Solid-state polymer electrolytes are considered as an alternative to classic liquid electrolytes, particularly for application in high-energy lithium metal batteries. With respect to common dual-ion conductors, single-ion conducting polymer electrolytes (SIC-PEs) are less affected by lithium dendrites growth and thus are particularly interesting for application in lithium metal batteries. In this work, novel SIC-PEs are developed, based on an ionomer having poly(ethylene-alt-maleimide) backbone and lithium phenylsulfonyl(trifluoromethanesulfonyl)imide pendant moieties, further blended with poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethyl ether (PEGDME). These SIC-PEs exhibit ionic conductivity around ~ 7 × 10−6 S·cm−1 at 70 °C, lithium transference number close to unity, and excellent mechanical properties, with fracture toughness over 30 J·cm−3. Additionally, the electrolytes show very high resistance against lithium dendrites growth, by cycling for more than 1200 h in Li° symmetric cells at a current density of 0.1 mA·cm−2. LiFePO4||Li° cells with these SIC-PEs were cycled at 70 °C and C/10, showing initial capacity of almost 160 mAh·g−1 and residual capacity of 45% after 100 cycles. This work shows that single-ion conducting polymer electrolytes based on poly(ethylene-alt-maleimide) backbone are promising materials for application as electrolytes or catholytes in lithium metal polymer batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites

Show Author's information David Fraile-Insagurbe1,2Nicola Boaretto1( )Itziar Aldalur1Iñigo Raposo1Francisco Javier Bonilla1Michel Armand1María Martínez-Ibañez1( )
Centre for Cooperative Research on Alternative Energies, CIC energiGUNE, Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, Vitoria-Gasteiz 01510, Spain
University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, Leioa 48940, Spain

Abstract

Solid-state polymer electrolytes are considered as an alternative to classic liquid electrolytes, particularly for application in high-energy lithium metal batteries. With respect to common dual-ion conductors, single-ion conducting polymer electrolytes (SIC-PEs) are less affected by lithium dendrites growth and thus are particularly interesting for application in lithium metal batteries. In this work, novel SIC-PEs are developed, based on an ionomer having poly(ethylene-alt-maleimide) backbone and lithium phenylsulfonyl(trifluoromethanesulfonyl)imide pendant moieties, further blended with poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethyl ether (PEGDME). These SIC-PEs exhibit ionic conductivity around ~ 7 × 10−6 S·cm−1 at 70 °C, lithium transference number close to unity, and excellent mechanical properties, with fracture toughness over 30 J·cm−3. Additionally, the electrolytes show very high resistance against lithium dendrites growth, by cycling for more than 1200 h in Li° symmetric cells at a current density of 0.1 mA·cm−2. LiFePO4||Li° cells with these SIC-PEs were cycled at 70 °C and C/10, showing initial capacity of almost 160 mAh·g−1 and residual capacity of 45% after 100 cycles. This work shows that single-ion conducting polymer electrolytes based on poly(ethylene-alt-maleimide) backbone are promising materials for application as electrolytes or catholytes in lithium metal polymer batteries.

Keywords: mechanical properties, lithium dendrites, polymer electrolytes, single-ion conductors, solid-state Li metal batteries, transference number

References(41)

[1]

Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 2018, 3, 267–278.

[2]
European Commission. SET-Plan ACTION n7-Declaration of Intent “Become competitive in the global battery sector to drive e-mobility forward”.
[3]

Chen, S. R.; Dai, F.; Cai, M. Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS Energy Lett. 2020, 5, 3140–3151.

[4]

Albertus, P.; Babinec, S.; Litzelman, S.; Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 2018, 3, 16–21.

[5]

Zhou, D.; Shanmukaraj, D.; Tkacheva, A.; Armand, M.; Wang, G. X. Polymer electrolytes for lithium-based batteries: Advances and prospects. Chem 2019, 5, 2326–2352.

[6]

Chen, Y.; Wen, K. H.; Chen, T. H.; Zhang, X. J.; Armand, M.; Chen, S. M. Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Mater. 2020, 31, 401–433.

[7]

Boaretto, N.; Garbayo, I.; Valiyaveettil-SobhanRaj, S.; Quintela, A.; Li, C. M.; Casas-Cabanas, M.; Aguesse, F. Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. J. Power Sources 2021, 502, 229919.

[8]

An, Y.; Han, X.; Liu, Y. Y.; Azhar, A.; Na, J.; Nanjundan, A. K.; Wang, S. P.; Yu, J. X.; Yamauchi, Y. Progress in solid polymer electrolytes for lithium-ion batteries and beyond. Small 2022, 18, 2103617.

[9]

Jeong, K.; Park, S.; Lee, S. Y. Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J. Mater. Chem. A 2019, 7, 1917–1935.

[10]

Zhang, H.; Li, C. M.; Piszcz, M.; Coya, E.; Rojo, T.; Rodriguez-Martinez, L. M.; Armand, M.; Zhou, Z. B. Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives. Chem. Soc. Rev. 2017, 46, 797–815.

[11]

Zhu, J. D.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P. F. Single-ion conducting polymer electrolytes for solid-state lithium-metal batteries: Design, performance, and challenges. Adv. Energy Mater. 2021, 11, 2003836.

[12]

Doyle, M.; Fuller, T. F.; Newman, J. The importance of the lithium ion transference number in lithium/polymer cells. Electrochim. Acta 1994, 39, 2073–2081.

[13]

Brissot, C.; Rosso, M.; Chazalviel, J. N.; Lascaud, S. Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 1999, 81–82, 925–929.

[14]

Rosso, M.; Brissot, C.; Teyssot, A.; Dollé, M.; Sannier, L.; Tarascon, J. M.; Bouchet, R.; Lascaud, S. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 2006, 51, 5334–5340.

[15]

Meziane, R.; Bonnet, J. P.; Courty, M.; Djellab, K.; Armand, M. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 2011, 57, 14–19.

[16]

Feng, S. W.; Shi, D. Y.; Liu, F.; Zheng, L. P.; Nie, J.; Feng, W. F.; Huang, X. J.; Armand, M.; Zhou, Z. B. Single lithium-ion conducting polymer electrolytes based on poly[(4-styrenesulfonyl)(trifluoromethanesulfonyl)imide] anions. Electrochim. Acta 2013, 93, 254–263.

[17]

Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J. P.; Phan, T. N. T.; Bertin, D.; Gigmes, D.; Devaux, D. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457.

[18]

Brandell, D.; Kasemägi, H.; Tamm, T.; Aabloo, A. Molecular dynamics modeling the Li-polystyreneTFSI/PEO blend. Solid State Ionics 2014, 262, 769–773.

[19]

Ma, Q.; Zhang, H.; Zhou, C. W.; Zheng, L. P.; Cheng, P. F.; Nie, J.; Feng, W. F.; Hu, Y. S.; Li, H.; Huang, X. J. et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem., Int. Ed. 2016, 55, 2521–2525.

[20]

Ma, Q.; Xia, Y.; Feng, W. F.; Nie, J.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q.; Armand, M.; Zhou, Z. B. Impact of the functional group in the polyanion of single lithium-ion conducting polymer electrolytes on the stability of lithium metal electrodes. RSC Adv. 2016, 6, 32454–32461.

[21]

Li, Z.; Lu, W. H.; Zhang, N.; Pan, Q. Y.; Chen, Y. Z.; Xu, G. D.; Zeng, D. L.; Zhang, Y. F.; Cai, W. W.; Yang, M. et al. Single ion conducting lithium sulfur polymer batteries with improved safety and stability. J. Mater. Chem. A 2018, 6, 14330–14338.

[22]

Devaux, D.; Liénafa, L.; Beaudoin, E.; Maria, S.; Phan, T. N. T.; Gigmes, D.; Giroud, E.; Davidson, P.; Bouchet, R. Comparison of single-ion-conductor block-copolymer electrolytes with polystyrene-TFSI and polymethacrylate-TFSI structural blocks. Electrochim. Acta 2018, 269, 250–261.

[23]

Nguyen, H. D.; Kim, G. T.; Shi, J. L.; Paillard, E.; Judeinstein, P.; Lyonnard, S.; Bresser, D.; Iojoiu, C. Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries. Energy Environ. Sci. 2018, 11, 3298–3309.

[24]

Meabe, L.; Goujon, N.; Li, C. M.; Armand, M.; Forsyth, M.; Mecerreyes, D. Single-ion conducting poly(ethylene oxide carbonate) as solid polymer electrolyte for lithium batteries. Batteries Supercaps 2020, 3, 68–75.

[25]

Cao, C.; Li, Y.; Feng, Y. Y.; Peng, C.; Li, Z. Y.; Feng, W. A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries. Energy Storage Mater. 2019, 19, 401–407.

[26]

Borzutzki, K.; Thienenkamp, J.; Diehl, M.; Winter, M.; Brunklaus, G. Fluorinated polysulfonamide based single ion conducting room temperature applicable gel-type polymer electrolytes for lithium ion batteries. J. Mater. Chem. A 2019, 7, 188–201.

[27]

Zhang, J. W.; Wang, S. J.; Han, D. M.; Xiao, M.; Sun, L. Y.; Meng, Y. Z. Lithium (4-styrenesulfonyl) (trifluoromethanesulfonyl) imide based single-ion polymer electrolyte with superior battery performance. Energy Storage Mater. 2020, 24, 579–587.

[28]

Yuan, H. Y.; Luan, J. Y.; Yang, Z. L.; Zhang, J.; Wu, Y. F.; Lu, Z. G.; Liu, H. T. Single lithium-ion conducting solid polymer electrolyte with superior electrochemical stability and interfacial compatibility for solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 7249–7256.

[29]

Martinez-Ibañez, M.; Sanchez-Diez, E.; Qiao, L. X.; Zhang, Y.; Judez, X.; Santiago, A.; Aldalur, I.; Carrasco, J.; Zhu, H. J.; Forsyth, M. et al. Unprecedented improvement of single Li-ion conductive solid polymer electrolyte through salt additive. Adv. Funct. Mater. 2020, 30, 2000455.

[30]

Martinez-Ibañez, M.; Sanchez-Diez, E.; Qiao, L. X.; Meabe, L.; Santiago, A.; Zhu, H. J.; O’Dell, L. A.; Carrasco, J.; Forsyth, M.; Armand, M. et al. Weakly coordinating fluorine-free polysalt for single lithium-ion conductive solid polymer electrolytes. Batteries Supercaps 2020, 3, 738–746.

[31]

Mi, J. S.; Ma, J. B.; Chen, L. K.; Lai, C.; Yang, K.; Biao, J.; Xia, H. Y.; Song, X.; Lv, W.; Zhong, G. M. et al. Topology crafting of polyvinylidene difluoride electrolyte creates ultra-long cycling high-voltage lithium metal solid-state batteries. Energy Storage Mater. 2022, 48, 375–383.

[32]

Borzutzki, K.; Nair, J. R.; Winter, M.; Brunklaus, G. Does cell polarization matter in single-ion conducting electrolytes? ACS Appl. Mater. Interfaces, 2022, 14, 5211–5222.

[33]

Arrese-Igor, M.; Martinez-Ibañez, M.; del Amo, J. M. L.; Sanchez-Diez, E.; Shanmukaraj, D.; Dumont, E.; Armand, M.; Aguesse, F.; López-Aranguren, P. Enabling double layer polymer electrolyte batteries: Overcoming the Li-salt interdiffusion. Energy Storage Mater. 2022, 45, 578–585.

[34]

Aldalur, I.; Zhang, H.; Piszcz, M.; Oteo, U.; Rodriguez-Martinez, L. M.; Shanmukaraj, D.; Rojo, T.; Armand, M. Jeffamine® based polymers as highly conductive polymer electrolytes and cathode binder materials for battery application. J. Power Sources 2017, 347, 37–46.

[35]

Aldalur, I.; Martinez-Ibañez, M.; Piszcz, M.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Lowering the operational temperature of all-solid-state lithium polymer cell with highly conductive and interfacially robust solid polymer electrolytes. J. Power Sources 2018, 383, 144–149.

[36]

Aldalur, I.; Martinez-Ibañez, M.; Krztoń-Maziopa, A.; Piszcz, M.; Armand, M.; Zhang, H. Flowable polymer electrolytes for lithium metal batteries. J. Power Sources 2019, 423, 218–226.

[37]

Aldalur, I.; Wang, X. E.; Santiago, A.; Goujon, N.; Echeverria, M.; Martinez-Ibañez, M.; Piszcz, M.; Howlett, P. C.; Forsyth, M.; Armand, M. et al. Nanofiber-reinforced polymer electrolytes toward room temperature solid-state lithium batteries. J. Power Sources 2020, 448, 227424.

[38]

Aldalur, I.; Martinez-Ibañez, M.; Piszcz, M.; Zhang, H.; Armand, M. Self-standing highly conductive solid electrolytes based on block copolymers for rechargeable all-solid-state lithium-metal batteries. Batteries Supercaps 2018, 1, 149–159.

[39]

Santiago, A.; Sanchez-Diez, E.; Oteo, U.; Aldalur, I.; Echeverría, M.; Armand, M.; Martinez-Ibañez, M.; Zhang, H. Single lithium ion conducting “binderlyte” for high-performing lithium metal batteries. Small 2022, 18, 2202027.

[40]

Rey, I.; Johansson, P.; Lindgren, J.; Lassègues, J. C.; Grondin, J.; Servant, L. Spectroscopic and theoretical study of (CF3SO2)2N (TFSI) and (CF3SO2)2NH (HTFSI). J. Phys. Chem. A 1998, 102, 3249–3258.

[41]

Parker, S. F. Vibrational spectroscopy of N-phenylmaleimide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 63, 544–549.

File
5378_ESM.pdf (1.9 MB)
Publication history
Copyright

Publication history

Received: 12 September 2022
Revised: 19 November 2022
Accepted: 02 December 2022
Published: 03 January 2023
Issue date: June 2023

Copyright

© Tsinghua University Press 2023
Return