Journal Home > Volume 16 , Issue 5

The invasion of etched dentinal tubules (DTs) by external substances induces dentin hypersensitivity (DH). The deep and compact occlusion of DTs is highly desirable for treating DH but still challenging due to the limited penetrability and mineralization capacities of most current desensitizers. Matrix vesicles (MVs) participate in the regulation of ectopic mineralization. Herein, ectopic MV analogs are prepared by employing natural cell membranes to endow mineral precursors with natural biointerfaces and integrated biofunctions for stimulating dentin remineralization. The analogs quickly access DTs (> 20 μm) in only 5 min and further penetrate deep into the interior of DTs (an extraordinary ~ 200 μm) in 7 days. Both in vitro and in vivo studies confirm that the DTs are efficiently sealed by the newly formed minerals (> 50 μm) with excellent resistance to wear and acid erosion, which is significantly deeper than most reported values. After repair, the microhardness of the damaged dentin can be recovered to those of healthy dentin. For the first time, cell membrane coating nanotechnology is used as a facile and efficient therapy for in-depth remineralization of DTs in treating DH with thorough and long-term effects, which provides insights into their potential for hard tissue repair.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ectopic mineralization-inspired cell membrane-based matrix vesicle analogs for in-depth remineralization of dentinal tubules for treating dentin hypersensitivity

Show Author's information Mingjing Li1Xiaoran Zheng1Zhiyun Dong1Yuyue Zhang1Wei Wu2Xingyu Chen3Chunmei Ding1Jiaojiao Yang4Jun Luo1( )Jianshu Li1,4,5( )
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
Key Laboratory for Biorheological Science and Technology of Ministry of Education State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
College of Medicine, Southwest Jiaotong University, Chengdu 610003, China
State Key Laboratory of Oral Diseases, West China Hospital of Stomatology and Med-X Center for Material, Sichuan University, Chengdu 610041, China
Med-X Center for Material, Sichuan University, Chengdu 610041, China

Abstract

The invasion of etched dentinal tubules (DTs) by external substances induces dentin hypersensitivity (DH). The deep and compact occlusion of DTs is highly desirable for treating DH but still challenging due to the limited penetrability and mineralization capacities of most current desensitizers. Matrix vesicles (MVs) participate in the regulation of ectopic mineralization. Herein, ectopic MV analogs are prepared by employing natural cell membranes to endow mineral precursors with natural biointerfaces and integrated biofunctions for stimulating dentin remineralization. The analogs quickly access DTs (> 20 μm) in only 5 min and further penetrate deep into the interior of DTs (an extraordinary ~ 200 μm) in 7 days. Both in vitro and in vivo studies confirm that the DTs are efficiently sealed by the newly formed minerals (> 50 μm) with excellent resistance to wear and acid erosion, which is significantly deeper than most reported values. After repair, the microhardness of the damaged dentin can be recovered to those of healthy dentin. For the first time, cell membrane coating nanotechnology is used as a facile and efficient therapy for in-depth remineralization of DTs in treating DH with thorough and long-term effects, which provides insights into their potential for hard tissue repair.

Keywords: bioinspiration, dentin remineralization, cell membrane coating nanotechnology, ectopic matrix vesicles, mineral precursors

References(51)

[1]

Cui, L.; Houston, D. A.; Farquharson, C.; MacRae, V. E. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone 2016, 87, 147–158.

[2]

Golub, E. E. Biomineralization and matrix vesicles in biology and pathology. Semin. Immunopathol. 2011, 33, 409–417.

[3]

Ansari, S.; de Wildt, B. W. M.; Vis, M. A. M.; de Korte, C. E.; Ito, K.; Hofmann, S.; Yuana, Y. Matrix vesicles: Role in bone mineralization and potential use as therapeutics. Pharmaceuticals 2021, 14, 289.

[4]

Iwayama, T.; Okada, T.; Ueda, T.; Tomita, K.; Matsumoto, S.; Takedachi, M.; Wakisaka, S.; Noda, T.; Ogura, T.; Okano, T. et al. Osteoblastic lysosome plays a central role in mineralization. Sci. Adv. 2019, 5, eaax0672.

[5]

Chen, N. X.; Kircelli, F.; O'Neill, K. D.; Chen, X. M.; Moe, S. M. Verapamil inhibits calcification and matrix vesicle activity of bovine vascular smooth muscle cells. Kidney Int. 2010, 77, 436–442.

[6]

Garcia, A. F.; Simão, A. M. S.; Bolean, M.; Hoylaerts, M. F.; Millán, J. L.; Ciancaglini, P.; Costa-Filho, A. J. Effects of GPI-anchored TNAP on the dynamic structure of model membranes. Phys. Chem. Chem. Phys. 2015, 17, 26295–26301.

[7]

Hessle, L.; Johnson, K. A.; Anderson, H. C.; Narisawa, S.; Sali, A.; Goding, J. W.; Terkeltaub, R.; Millán, J. L. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. USA 2002, 99, 9445–9449.

[8]

Bäck, M.; Michel, J. B. From organic and inorganic phosphates to valvular and vascular calcifications. Cardiovasc. Res. 2021, 117, 2016–2029.

[9]

Li, T. T.; Yu, H. C.; Zhang, D. M.; Feng, T.; Miao, M.; Li, J. W.; Liu, X. H. Matrix vesicles as a therapeutic target for vascular calcification. Front. Cell Dev. Biol. 2022, 10, 825622.

[10]

Jing, L. L.; Li, L. H.; Sun, Z.; Bao, Z. Y.; Shao, C.; Yan, J. C.; Pang, Q. W.; Geng, Y.; Zhang, L. L.; Wang, X. D. et al. Role of matrix vesicles in bone-vascular cross-talk. J. Cardiovasc. Pharmacol. 2019, 74, 372–378.

[11]

Yan, J. F.; Qin, W. P.; Xiao, B. C.; Wan, Q. Q.; Tay, F. R.; Niu, L. N.; Jiao, K. Pathological calcification in osteoarthritis: An outcome or a disease initiator? Biol. Rev. 2020, 95, 960–985.

[12]

Kapustin, A. N.; Shanahan, C. M. Calcium regulation of vascular smooth muscle cell-derived matrix vesicles. Trends Cardiovasc. Med. 2012, 22, 133–137.

[13]

Wang, D. Y.; Wang, X. M.; Huang, L.; Pan, Z. Y.; Liu, K. X.; Du, B. B.; Xue, Y.; Li, B.; Zhang, Y.; Wang, H. et al. Unraveling an innate mechanism of pathological mineralization-regulated inflammation by a nanobiomimetic system. Adv. Healthcare Mater. 2021, 10, 2101586.

[14]

Zazzeroni, L.; Faggioli, G.; Pasquinelli, G. Mechanisms of arterial calcification: The role of matrix vesicles. Eur. J. Vasc. Endovasc. Surg. 2018, 55, 425–432.

[15]

Willems, B. A.; Furmanik, M.; Caron, M. M. J.; Chatrou, M. L. L.; Kusters, D. H. M.; Welting, T. J. M.; Stock, M.; Rafael, M. S.; Viegas, C. S. B.; Simes, D. C. et al. Ucma/GRP inhibits phosphate-induced vascular smooth muscle cell calcification via SMAD-dependent BMP signalling. Sci. Rep. 2018, 8, 4961.

[16]

Garcés-Ortíz, M.; Ledesma-Montes, C.; Reyes-Gasga, J. Presence of matrix vesicles in the body of odontoblasts and in the inner third of dentinal tissue: A scanning electron microscopic study. Med. Oral Patol. Oral Cir. Bucal 2013, 18, e537–e541.

[17]

Ismail, N. F. A.; Rostam, M. A.; Jais, M. F. M.; Mohd Shafri, M. A.; Ismail, A. F.; Arzmi, M. H. Review: Exploring the potential of nigella sativa for tooth mineralization and periodontitis treatment and its additive effect with doxycycline. IIUM J. Orofacial Health Sci. 2022, 3, 136–146.

[18]

Bucchi, C.; Ohlsson, E.; de Anta, J. M.; Woelflick, M.; Galler, K.; Manzanares-Cespedes, M. C.; Widbiller, M. Human amnion epithelial cells: A potential cell source for pulp regeneration? Int. J. Mol. Sci. 2022, 23, 2830.

[19]

Yan, W. S.; Jiang, E.; Renteria, C.; Paranjpe, A.; Arola, D. D.; Liao, L.; Ren, X. Y.; Zhang, H. Odontoblast apoptosis and intratubular mineralization of sclerotic dentin with aging. Arch. Oral Biol. 2022, 136, 105371.

[20]

West, N.; Seong, J.; Davies, M. Dentine hypersensitivity. Monogr. Oral Sci. 2014, 25, 108–122.

[21]

Saeki, K.; Marshall, G. W.; Gansky, S. A.; Parkinson, C. R.; Marshall, S. J. Strontium effects on root dentin tubule occlusion and nanomechanical properties. Dent. Mater. 2016, 32, 240–251.

[22]

Chen, Z.; Duan, Y. Y.; Shan, S. Z.; Sun, K. D.; Wang, G.; Shao, C. Y.; Tang, Z. H.; Xu, Z. K.; Zhou, Y. Y.; Chen, Z. et al. Deep and compact dentinal tubule occlusion via biomimetic mineralization and mineral overgrowth. Nanoscale 2022, 14, 642–652.

[23]

Akram, Z.; Daood, U.; Aati, S.; Ngo, H.; Fawzy, A. S. Formulation of pH-sensitive chlorhexidine-loaded/mesoporous silica nanoparticles modified experimental dentin adhesive. Mater. Sci. Eng. C 2021, 122, 111894.

[24]

de Carvalho, M. A.; Lazari-Carvalho, P. C.; Polonial, I. F.; de Souza, J. B.; Magne, P. Significance of immediate dentin sealing and flowable resin coating reinforcement for unfilled/lightly filled adhesive systems. J. Esthet. Restor. Dent. 2021, 33, 88–98.

[25]

Li, C.; Lu, D. Y.; Deng, J. J.; Zhang, X.; Yang, P. Amyloid-like rapid surface modification for antifouling and in-depth remineralization of dentine tubules to treat dental hypersensitivity. Adv. Mater. 2019, 31, 1903973.

[26]

Bandarra, S.; Mascarenhas, P.; Luís, A. R.; Catrau, M.; Bekman, E.; Ribeiro, A. C.; Félix, S.; Caldeira, J.; Barahona, I. In vitro and in silico evaluations of resin-based dental restorative material toxicity. Clin. Oral Invest. 2020, 24, 2691–2700.

[27]

Bae, J. H.; Kim, Y. K.; Myung, S. K. Desensitizing toothpaste versus placebo for dentin hypersensitivity: A systematic review and meta-analysis. J. Clin. Periodontol. 2015, 42, 131–141.

[28]

Fang, R. H.; Kroll, A. V.; Gao, W. W.; Zhang, L. F. Cell membrane coating nanotechnology. Adv. Mater. 2018, 30, 1706759.

[29]

Wang, Y.; Zhang, K.; Qin, X.; Li, T. H.; Qiu, J. H.; Yin, T. Y.; Huang, J. L.; McGinty, S.; Pontrelli, G.; Ren, J. et al. Biomimetic nanotherapies: Red blood cell based core–shell structured nanocomplexes for atherosclerosis management. Adv. Sci. 2019, 6, 1900172.

[30]

Sun, L. Z.; He, L. B.; Wu, W.; Luo, L.; Han, M. Y.; Liu, Y. F.; Shi, S. J.; Zhong, K. J.; Yang, J. J.; Li, J. Y. Fibroblast membrane-camouflaged nanoparticles for inflammation treatment in the early stage. Int. J. Oral Sci. 2021, 13, 39.

[31]

Luk, B. T.; Hu, C. M.; Fang, R. H.; Dehaini, D.; Carpenter, C.; Gao, W. W.; Zhang, L. F. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles. Nanoscale 2014, 6, 2730–2737.

[32]

Narain, A.; Asawa, S.; Chhabria, V.; Patil-Sen, Y. Cell membrane coated nanoparticles: Next-generation therapeutics. Nanomedicine 2017, 12, 2677–2692.

[33]

Yan, H. Z.; Shao, D.; Lao, Y. H.; Li, M. Q.; Hu, H. Z.; Leong, K. W. Engineering cell membrane-based nanotherapeutics to target inflammation. Adv. Sci. 2019, 6, 1900605.

[34]

Dong, Z. Y.; Ke, X.; Tang, S. X.; Wu, S.; Wu, W.; Chen, X. Y.; Yang, J. J.; Xie, J.; Luo, J.; Li, J. S. A stable cell membrane-based coating with antibiofouling and macrophage immunoregulatory properties for implants at the macroscopic level. Chem. Mater. 2021, 33, 7994–8006.

[35]

Kaestner, L.; Bogdanova, A.; Egee, S. Calcium channels and calcium-regulated channels in human red blood cells. Adv. Exp. Med. Biol. 2020, 1131, 625–648.

[36]

Bogdanova, A.; Makhro, A.; Wang, J.; Lipp, P.; Kaestner, L. Calcium in red blood cells—A perilous balance. Int. J. Mol. Sci. 2013, 14, 9848–9872.

[37]

Tziakas, D. N.; Chalikias, G.; Pavlaki, M.; Kareli, D.; Gogiraju, R.; Hubert, A.; Böhm, E.; Stamoulis, P.; Drosos, I.; Kikas, P. et al. Lysed erythrocyte membranes promote vascular calcification: Possible role of erythrocyte-derived nitric oxide. Circulation 2019, 139, 2032–2048.

[38]

Yao, W.; Ma, L.; Chen, R. H.; Xie, Y. M.; Li, B., Zhao, B. Guided tissue remineralization and its effect on promoting dentin bonding. Front. Mater. 2022, 9, 1026522.

[39]

Tang, S. X.; Dong, Z. Y.; Ke, X.; Luo, J.; Li, J. S. Advances in biomineralization-inspired materials for hard tissue repair. Int. J. Oral Sci. 2021, 13, 42.

[40]

Lotsari, A.; Rajasekharan, A. K.; Halvarsson, M.; Andersson, M. Transformation of amorphous calcium phosphate to bone-like apatite. Nat. Commun. 2018, 9, 4170.

[41]

Mu, Z.; Kong, K. R.; Jiang, K.; Dong, H. L.; Xu, X. R.; Liu, Z. M.; Tang, R. K. Pressure-driven fusion of amorphous particles into integrated monoliths. Science 2021, 372, 1466–1470.

[42]

He, L. B.; Hao. Y.; Zhen, L.; Liu, H. L.; Shao, M. Y.; Xu, X.; Liang, K. N.; Gao, Y.; Yuan, H.; Li, J. S. et al. Biomineralization of dentin. J. Struct. Biol. 2019, 207, 115–122.

[43]

Sun, X. Y.; Xu, C.; Wu, G.; Ye, Q. S.; Wang, C. N. Poly(lactic-co-glycolic acid): Applications and future prospects for periodontal tissue regeneration. Polymers 2017, 9, 189.

[44]

Tjäderhane, L.; Carrilho, M. R.; Breschi, L.; Tay, F. R.; Pashley, D. H. Dentin basic structure and composition—An overview. Endod. Top. 2009, 20, 3–29.

[45]

Shapiro, I. M.; Landis, W. J.; Risbud, M. V. Matrix vesicles: Are they anchored exosomes? Bone 2015, 79, 29–36.

[46]

Carda, C.; Peydró, A. Ultrastructural patterns of human dentinal tubules, odontoblasts processes and nerve fibres. Tissue Cell 2006, 38, 141–150.

[47]

Tan, S. W.; Wu, T. T.; Zhang, D.; Zhang, Z. P. Cell or cell membrane-based drug delivery systems. Theranostics 2015, 5, 863–881.

[48]

Wang, Z.; Ouyang, Y.; Wu, Z. F.; Zhang, L. Q.; Shao, C. Y.; Fan, J. Y.; Zhang, L.; Shi, Y.; Zhou, Z. H.; Pan, H. H. et al. A novel fluorescent adhesive-assisted biomimetic mineralization. Nanoscale 2018, 10, 18980–18987.

[49]

Priante, G.; Mezzabotta, F.; Cristofaro, R.; Quaggio, F.; Ceol, M.; Gianesello, L.; Del Prete, D.; Anglani, F. Cell death in ectopic calcification of the kidney. Cell Death Dis. 2019, 10, 466.

[50]

Wu, C. Y.; Martel, J.; Young, J. D. Ectopic calcification and formation of mineralo-organic particles in arteries of diabetic subjects. Sci. Rep. 2020, 10, 8545.

[51]

Liang, K. N.; Weir, M. D.; Xie, X. J.; Wang, L.; Reynolds, M. A.; Li, J. Y.; Xu, H. H. K. Dentin remineralization in acid challenge environment via PAMAM and calcium phosphate composite. Dent. Mater. 2016, 32, 1429–1440.

File
12274_2022_5376_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 August 2022
Revised: 28 November 2022
Accepted: 03 December 2022
Published: 14 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We are grateful for the financial support of the National Natural Science Foundation of China (Nos. 51925304, 51903175, and 51973133).

Return