Journal Home > Online First

As a standard cancer treatment method, radiotherapy (RT) has cured or alleviated over half cancer bearing patients worldwide more than 100 years. However, the therapeutic outcome is seriously hindered by the resistant tumor microenvironment (TME). Hypoxia is a critical factor of vicious TME that causes radiation resistance owing to the insufficiency of oxygen for DNA damage maintenance. Moreover, severe vascular dysfunction and pyknomorphic extracellular matrix (ECM) in deep tumor tissues substantially limit radiosensitizer penetration and oxygen diffusion from vessels into tightly packed tumor core. In this study, we develop a hybrid transcytosis nanopomegranate (HTP) with high transcytosis potential in response to TME condition. HTP is architected by self-assembly of small CuS and Au nanoparticles (NPs) at normal physiological condition. HTP can rapidly collapse to transcytosis NPs (CuS and Au NPs) in TME with cationized surface, which enables excellent transcytosis potential and effectively elevates the penetration of CuS and Au into deep tumor tissues. Following the second near-infrared (NIR(II)) biowindow laser irradiation, CuS heats the tumor and enhances blood perfusion, eliciting tumor hypoxia alleviation and DNA damage aggravation. Moreover, Au NPs enriched in deep tumor tissues effectively sensitize radio-therapeutic response. Our study provides a new and potential nano-platform to ameliorate tumor hypoxia and sensitize deep tumor tissue radiotherapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hybrid transcytosis nanopomegranates for sensitizing breast cancer radiotherapy in deep tumor tissue

Show Author's information Li Wang2,§Liang Xiao4,§Zhengyang Zhao4,§Kai Zhong4Weiliang Zhu1( )Hao Liu3( )Xiaoqiu Li1( )
Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou 510095, China
Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China

§ Li Wang, Liang Xiao, and Zhengyang Zhao contributed equally to this work.

Abstract

As a standard cancer treatment method, radiotherapy (RT) has cured or alleviated over half cancer bearing patients worldwide more than 100 years. However, the therapeutic outcome is seriously hindered by the resistant tumor microenvironment (TME). Hypoxia is a critical factor of vicious TME that causes radiation resistance owing to the insufficiency of oxygen for DNA damage maintenance. Moreover, severe vascular dysfunction and pyknomorphic extracellular matrix (ECM) in deep tumor tissues substantially limit radiosensitizer penetration and oxygen diffusion from vessels into tightly packed tumor core. In this study, we develop a hybrid transcytosis nanopomegranate (HTP) with high transcytosis potential in response to TME condition. HTP is architected by self-assembly of small CuS and Au nanoparticles (NPs) at normal physiological condition. HTP can rapidly collapse to transcytosis NPs (CuS and Au NPs) in TME with cationized surface, which enables excellent transcytosis potential and effectively elevates the penetration of CuS and Au into deep tumor tissues. Following the second near-infrared (NIR(II)) biowindow laser irradiation, CuS heats the tumor and enhances blood perfusion, eliciting tumor hypoxia alleviation and DNA damage aggravation. Moreover, Au NPs enriched in deep tumor tissues effectively sensitize radio-therapeutic response. Our study provides a new and potential nano-platform to ameliorate tumor hypoxia and sensitize deep tumor tissue radiotherapy.

Keywords: breast cancer, transcytosis, hybrid nanopomegranate, hypoxia alleviation, radiosensitization

References(50)

[1]

Bodei, L.; Herrmann, K.; Schöder, H.; Scott, A. M.; Lewis, J. S. Radiotheranostics in oncology: Current challenges and emerging opportunities. Nat. Rev. Clin. Oncol. 2022, 19, 534–550.

[2]

Garcia-Barros, M.; Paris, F.; Cordon-Cardo, C.; Lyden, D.; Rafii, S.; Haimovitz-Friedman, A.; Fuks, Z.; Kolesnick, R. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003, 300, 1155–1159.

[3]

Miller, M. A.; Chandra, R.; Cuccarese, M. F.; Pfirschke, C.; Engblom, C.; Stapleton, S.; Adhikary, U.; Kohler, R. H.; Mohan, J. F.; Pittet, M. J. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl. Med. 2017, 9, eaal0225.

[4]

Zalutsky, M. R. Targeted radiotherapy of brain tumours. Brit. J. Cancer 2004, 90, 1469–1473.

[5]

Jaffray, D. A. Image-guided radiotherapy: From current concept to future perspectives. Nat. Rev. Clin. Oncol. 2012, 9, 688–699.

[6]

Verellen, D.; De Ridder, M.; Linthout, N.; Tournel, K.; Soete, G.; Storme, G. Innovations in image-guided radiotherapy. Nat. Rev. Cancer 2007, 7, 949–960.

[7]

Larionova, I.; Rakina, M.; Ivanyuk, E.; Trushchuk, Y.; Chernyshova, A.; Denisov, E. Radiotherapy resistance: Identifying universal biomarkers for various human cancers. J. Cancer Res. Clin. Oncol. 2022, 148, 1015–1031.

[8]

Baumann, M.; Krause, M.; Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Res. Cancer 2008, 8, 545–554.

[9]

Suwa, T.; Kobayashi, M.; Nam, J. M.; Harada, H. Tumor microenvironment and radioresistance. Exp. Mol. Med. 2021, 53, 1029–1035.

[10]

Singleton, D. C.; Macann, A.; Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 2021, 18, 751–772.

[11]

Bao, S. D.; Wu, Q. L.; McLendon, R. E.; Hao, Y. L.; Shi, Q.; Hjelmeland, A. B.; Dewhirst, M. W.; Bigner, D. D.; Rich, J. N. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006, 444, 756–760.

[12]

Shinde-Jadhav, S.; Mansure, J. J.; Rayes, R. F.; Marcq, G.; Ayoub, M.; Skowronski, R.; Kool, R.; Bourdeau, F.; Brimo, F.; Spicer, J. et al. Role of neutrophil extracellular traps in radiation resistance of invasive bladder cancer. Nat. Commun. 2021, 12, 2776.

[13]

Gilson, S. E.; Fairley, M.; Julien, P.; Oliver, A. G.; Hanna, S. L.; Arntz, G.; Farha, O. K.; LaVerne, J. A.; Burns, P. C. Unprecedented radiation resistant thorium-binaphthol metal-organic framework. J. Am. Chem. Soc. 2020, 142, 13299–13304.

[14]

Barker, H. E.; Paget, J. T. E.; Khan, A. A.; Harrington, K. J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409–425.

[15]

Huang, C. Y.; Wang, F. B.; Liu, L.; Jiang, W.; Liu, W.; Ma, W.; Zhao, H. Hypoxic tumor radiosensitization using engineered probiotics. Adv. Healthc. Mater. 2021, 10, 2002207.

[16]

Zhou, X. G.; Liu, H. H.; Zheng, Y. H.; Han, Y. B.; Wang, T. T.; Zhang, H.; Sun, Q.; Li, Z. Overcoming radioresistance in tumor therapy by alleviating hypoxia and using the HIF-1 inhibitor. ACS Appl. Mater. Interfaces 2020, 12, 4231–4240.

[17]

Begg, K.; Tavassoli, M. Inside the hypoxic tumour: Reprogramming of the DDR and radioresistance. Cell Death Discov. 2020, 6, 77.

[18]

Huang, R. X.; Zhou, P. K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020, 5, 60.

[19]

Borrego-Soto, G.; Ortiz-López, R.; Rojas-Martínez, A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet. Mol. Biol. 2015, 38, 420–432.

[20]

Sau, A.; Sanyal, S.; Bera, K.; Sen, S.; Mitra, A. K.; Pal, U.; Chakraborty, P. K.; Ganguly, S.; Satpati, B.; Das, C. et al. DNA damage and apoptosis induction in cancer cells by chemically engineered thiolated riboflavin gold nanoassembly. ACS Appl. Mater. Interfaces 2018, 10, 4582–4589.

[21]

Song, X. J.; Feng, L. Z.; Liang, C.; Yang, K.; Liu, Z. Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett. 2016, 16, 6145–6153.

[22]

Jiang, W.; Li, Q.; Zhu, Z. C.; Wang, Q.; Dou, J. X.; Zhao, Y. M.; Lv, W. F.; Zhong, F.; Yao, Y. D.; Zhang, G. Q. et al. Cancer chemoradiotherapy duo: Nano-enabled targeting of DNA lesion formation and DNA damage response. ACS Appl. Mater. Interfaces 2018, 10, 35734–35744.

[23]

Zhuang, F.; Ma, Q.; Dong, C. H.; Xiang, H. J.; Shen, Y. J.; Sun, P.; Li, C. X.; Chen, Y. X.; Lu, B. L.; Chen, Y. et al. Sequential ultrasound-triggered and hypoxia-sensitive nanoprodrug for cascade amplification of sonochemotherapy. ACS Nano 2022, 16, 5439–5453.

[24]

Meng, L. T.; Cheng, Y. L.; Tong, X. N.; Gan, S. J.; Ding, Y. W.; Zhang, Y.; Wang, C.; Xu, L.; Zhu, Y. S.; Wu, J. H. et al. Tumor oxygenation and hypoxia inducible factor-1 functional inhibition via a reactive oxygen species responsive nanoplatform for enhancing radiation therapy and abscopal effects. ACS Nano 2018, 12, 8308–8322.

[25]

Wang, Y. J.; Zou, L. Q.; Qiang, Z.; Jiang, J. H.; Zhu, Z. F.; Ren, J. Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using Mn-Zn ferrite magnetic nanoparticles. ACS Biomater. Sci. Eng. 2020, 6, 3550–3562.

[26]

Jiang, W.; Han, X. X.; Zhang, T. X.; Xie, D. Y.; Zhang, H.; Hu, Y. An oxygen self-evolving, multistage delivery system for deeply located hypoxic tumor treatment. Adv. Healthc. Mater. 2020, 9, 1901303.

[27]

Jiang, W.; Zhang, Z.; Wang, Q.; Dou, J. X.; Zhao, Y. Y.; Ma, Y. C.; Liu, H. R.; Xu, H. X.; Wang, Y. C. Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 2019, 19, 4060–4067.

[28]

Li, Q.; Hang, L. F.; Jiang, W.; Dou, J. X.; Xiao, L.; Tang, X. F.; Yao, Y. D.; Wang, Y. C. Pre- and post-irradiation mild hyperthermia enabled by NIR-II for sensitizing radiotherapy. Biomaterials 2020, 257, 120235.

[29]

Huang, J. C.; Zhang, L. L.; Wan, D. L.; Zhou, L.; Zheng, S. S.; Lin, S. Z.; Qiao, Y. T. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct. Target. Ther. 2021, 6, 153.

[30]

Lee, J. Y.; Chaudhuri, O. Regulation of breast cancer progression by extracellular matrix mechanics: Insights from 3D culture models. ACS Biomater. Sci. Eng. 2018, 4, 302–313.

[31]

Cox, T. R. The matrix in cancer. Nat. Rev. Cancer 2021, 21, 217–238.

[32]

Han, X. X.; Li, Y. Y.; Xu, Y.; Zhao, X.; Zhang, Y. L.; Yang, X.; Wang, Y. W.; Zhao, R. F.; Anderson, G. J.; Zhao, Y. L. et al. Reversal of pancreatic desmoplasia by re-educating stellate cells with a tumour microenvironment-activated nanosystem. Nat. Commun. 2018, 9, 3390.

[33]

Heldin, C. H.; Rubin, K.; Pietras, K.; Östman, A. High interstitial fluid pressure-an obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806–813.

[34]

Keller, S. B.; Averkiou, M. A. The role of ultrasound in modulating interstitial fluid pressure in solid tumors for improved drug delivery. Bioconjug. Chem. 2022, 33, 1049–1056.

[35]

Gao, X.; Zhang, J.; Huang, Z.; Zuo, T. T.; Lu, Q.; Wu, G. Y.; Shen, Q. Reducing interstitial fluid pressure and inhibiting pulmonary metastasis of breast cancer by gelatin modified cationic lipid nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 29457–29468.

[36]

Li, A.; Li, X.; Yu, X. J.; Li, W.; Zhao, R. Y.; An, X.; Cui, D. X.; Chen, X. Y.; Li, W. W. Synergistic thermoradiotherapy based on PEGylated Cu3BiS3 ternary semiconductor nanorods with strong absorption in the second near-infrared window. Biomaterials 2017, 112, 164–175.

[37]

Cai, R.; Xiang, H. D.; Yang, D.; Lin, K. T.; Wu, Y. Z.; Zhou, R. Y.; Gu, Z. J.; Yan, L.; Zhao, Y. L.; Tan, W. H. Plasmonic AuPt@CuS heterostructure with enhanced synergistic efficacy for radiophotothermal therapy. J. Am. Chem. Soc. 2021, 143, 16113–16127.

[38]

Cheng, X. J.; Yong, Y.; Dai, Y. H.; Song, X.; Yang, G.; Pan, Y.; Ge, C. C. Enhanced radiotherapy using bismuth sulfide nanoagents combined with photo-thermal treatment. Theranostics 2017, 7, 4087–4098.

[39]

Yong, Y.; Zhang, C. F.; Gu, Z. J.; Du, J. F.; Guo, Z.; Dong, X. H.; Xie, J. N.; Zhang, G. J.; Liu, X. F.; Zhao, Y. L. Polyoxometalate-based radiosensitization platform for treating hypoxic tumors by attenuating radioresistance and enhancing radiation response. ACS Nano 2017, 11, 7164–7176.

[40]

Pandit, S.; Dutta, D.; Nie, S. M. Active transcytosis and new opportunities for cancer nanomedicine. Nat. Mater. 2020, 19, 478–480.

[41]

Biswas, S.; Mandal, G.; Payne, K. K.; Anadon, C. M.; Gatenbee, C. D.; Chaurio, R. A.; Costich, T. L.; Moran, C.; Harro, C. M.; Rigolizzo, K. E. et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 2021, 591, 464–470.

[42]

Yang, D.; Liu, D. C.; Deng, H. L.; Zhang, J.; Qin, M. M.; Yuan, L.; Zou, X. J.; Shao, B.; Li, H. P.; Dai, W. B. et al. Transferrin functionization elevates transcytosis of nanogranules across epithelium by triggering polarity-associated transport flow and positive cellular feedback loop. ACS Nano 2019, 13, 5058–5076.

[43]

Morad, G.; Carman, C. V.; Hagedorn, E. J.; Perlin, J. R.; Zon, L. I.; Mustafaoglu, N.; Park, T. E.; Ingber, D. E.; Daisy, C. C.; Moses, M. A. Tumor-derived extracellular vesicles breach the intact blood-brain barrier via transcytosis. ACS Nano 2019, 13, 13853–13865.

[44]

Liu, Y.; Huo, Y. Y.; Yao, L.; Xu, Y. W.; Meng, F. Q.; Li, H. F.; Sun, K.; Zhou, G. D.; Kohane, D. S.; Tao, K. Transcytosis of nanomedicine for tumor penetration. Nano Lett. 2019, 19, 8010–8020.

[45]

Wang, G. W.; Zhou, Z. X.; Zhao, Z. H.; Li, Q. Y.; Wu, Y. L.; Yan, S.; Shen, Y. Q.; Huang, P. T. Enzyme-triggered transcytosis of dendrimer-drug conjugate for deep penetration into pancreatic tumors. ACS Nano 2020, 14, 4890–4904.

[46]

Zhou, Q.; Shao, S. Q.; Wang, J. Q.; Xu, C. H.; Xiang, J. J.; Piao, Y.; Zhou, Z. X.; Yu, Q. S.; Tang, J. B.; Liu, X. R. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 2019, 14, 799–809.

[47]

Chen, S. Q.; Zhong, Y.; Fan, W. F.; Xiang, J. J.; Wang, G. W.; Zhou, Q.; Wang, J. Q.; Geng, Y.; Sun, R.; Zhang, Z. et al. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat. Biomed. Eng. 2021, 5, 1019–1037.

[48]

Wang, L.; Jiang, W.; Xiao, L.; Li, H. J.; Chen, Z. Q.; Liu, Y.; Dou, J. X.; Li, S. Y.; Wang, Q.; Han, W. et al. Self-reporting and splitting nanopomegranates potentiate deep tissue cancer radiotherapy via elevated diffusion and transcytosis. ACS Nano 2020, 14, 8459–8472.

[49]

Wang, G. W.; Zhang, C.; Jiang, Y. F.; Song, Y.; Chen, J. F.; Sun, Y.; Li, Q. Y.; Zhou, Z. X.; Shen, Y. Q.; Huang, P. T. Ultrasonic cavitation-assisted and acid-activated transcytosis of liposomes for universal active tumor penetration. Adv. Funct. Mater. 2021, 31, 2102786.

[50]

Ruan, S. B.; Qin, L.; Xiao, W.; Hu, C.; Zhou, Y.; Wang, R. R.; Sun, X.; Yu, W. Q.; He, Q.; Gao, H. L. Acid-responsive transferrin dissociation and GLUT mediated exocytosis for increased blood-brain barrier transcytosis and programmed glioma targeting delivery. Adv. Funct. Mater. 2018, 28, 1802227.

File
5375_ESM.pdf (882.4 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 10 August 2022
Revised: 30 November 2022
Accepted: 03 December 2022
Published: 27 February 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 32101139 and 81901888), the Fundamental Research Fund for the Central Universities (No. WK9100000006), the China Postdoctoral Science Foundation (No. 2020M683160), the Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515220028), and the Natural Science Foundation of Anhui Province of China (No. 1908085MH247). All animals received were in compliance with the guidelines outlined in the Guide for the Care and Use of Laboratory Animals, and all procedures were approved by the University of Science and Technology of China Animal Care and Use Committee (No. USTCACUC1801062).

Rights and permissions

Reprints and Permission requests may be sought directly from editorial office.
Email: nanores@tup.tsinghua.edu.cn

Return