Journal Home > Volume 16 , Issue 5

The design and preparation of cost-effective and durable catalysts for electrochemical water splitting are significant for the development and application of hydrogen production. Herein, inspired by the underwater superaerophobicity of fish scales, a three-dimensional multilevel nanoarray electrode with superaerophobicity was designed and fabricated by the hydrothermal method to solve the bubble shielding effect in electrochemical reactions. Benefiting from the high specific surface area, superaerophobic properties, and Al doping, the Al-CoS2 nanosheets (NSs)/nickel foam (NF)-30 exhibits outstanding electrocatalytic activity and superior durability for electrochemical water splitting in 1 M KOH. Significantly, the Al-CoS2 NSs/NF-30 only required extremely low overpotential of 176 mV for oxygen evolution reaction (OER) to reach a current density of 10 mA·cm–2. Al-CoS2 NSs/NF-30 was employed as bifunctional electrode for electrochemical water splitting with a cell voltage of 1.58 V at 10 mA·cm–2. Meanwhile, Al-CoS2 NSs/NF-30 exhibited excellent durability (250 h@10 mA·cm–2 and 50 h@100 mA·cm–2). The cobalt-based catalyst (Al-CoS2 NSs/NF-30) with superaerophobicity exhibits excellent performance in activity and durability, and therefore is a promising electrochemical water splitting catalyst.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biomimetic three-dimensional multilevel nanoarray electrodes with superaerophobicity as efficient bifunctional catalysts for electrochemical water splitting

Show Author's information Dongdong Wang1,2Yue Liu1,2Lili Liu1,2Dongfang Shan1,2Guixin Shen1,2Shanlong Peng1,2Heng Zhang1,2( )Xindong Wang1,2( )
State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The design and preparation of cost-effective and durable catalysts for electrochemical water splitting are significant for the development and application of hydrogen production. Herein, inspired by the underwater superaerophobicity of fish scales, a three-dimensional multilevel nanoarray electrode with superaerophobicity was designed and fabricated by the hydrothermal method to solve the bubble shielding effect in electrochemical reactions. Benefiting from the high specific surface area, superaerophobic properties, and Al doping, the Al-CoS2 nanosheets (NSs)/nickel foam (NF)-30 exhibits outstanding electrocatalytic activity and superior durability for electrochemical water splitting in 1 M KOH. Significantly, the Al-CoS2 NSs/NF-30 only required extremely low overpotential of 176 mV for oxygen evolution reaction (OER) to reach a current density of 10 mA·cm–2. Al-CoS2 NSs/NF-30 was employed as bifunctional electrode for electrochemical water splitting with a cell voltage of 1.58 V at 10 mA·cm–2. Meanwhile, Al-CoS2 NSs/NF-30 exhibited excellent durability (250 h@10 mA·cm–2 and 50 h@100 mA·cm–2). The cobalt-based catalyst (Al-CoS2 NSs/NF-30) with superaerophobicity exhibits excellent performance in activity and durability, and therefore is a promising electrochemical water splitting catalyst.

Keywords: oxygen evolution reaction, hydrogen evolution reaction, superaerophobicity, biomimetic structure

References(55)

[1]

Han, X.; Tao, K.; Wang, D.; Han, L. Design of a porous cobalt sulfide nanosheet array on Ni foam from zeolitic imidazolate frameworks as an advanced electrode for supercapacitors. Nanoscale 2018, 10, 2735–2741.

[2]

Nowotny, J.; Dodson, J.; Fiechter, S.; Gür, T. M.; Kennedy, B.; Macyk, W.; Bak, T.; Sigmund, W.; Yamawaki, M.; Rahman, K. A. Towards global sustainability: Education on environmentally clean energy technologies. Renew. Sust. Energ. Rev. 2018, 81, 2541–2551.

[3]

Su, J. W.; Ge, R. X.; Jiang, K. M.; Dong, Y.; Hao, F.; Tian, Z. Q.; Chen, G. X.; Chen, L. Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: Highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater. 2018, 30, 1801351.

[4]

Andersson, J.; Grönkvist, S. Large-scale storage of hydrogen. Int. J. Hydrogen Energy 2019, 44, 11901–11919.

[5]

Capurso, T.; Stefanizzi, M.; Torresi, M.; Camporeale, S. M. Perspective of the role of hydrogen in the 21st century energy transition. Energy Convers Manag. 2022, 251, 114898.

[6]

Shit, S.; Chhetri, S.; Jang, W.; Murmu, N. C.; Koo, H.; Samanta, P.; Kuila, T. Cobalt sulfide/nickel sulfide heterostructure directly grown on nickel foam: An efficient and durable electrocatalyst for overall water splitting application. ACS Appl. Mater. Interfaces 2018, 10, 27712–27722.

[7]

Zubair, M.; UL Hassan, M. M.; Mehran, M. T.; Baig, M. M.; Hussain, S.; Shahzad, F. 2D MXenes and their heterostructures for HER, OER, and overall water splitting: A review. Int. J. Hydrogen Energy 2022, 47, 2794–2818.

[8]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[9]

Ullah, N.; Zhao, W. T.; Lu, X. Q.; Oluigbo, C. J.; Shah, S. A.; Zhang, M. M.; Xie, J. M.; Xu, Y. G. In situ growth of M-MO (M = Ni, Co) in 3D graphene as a competent bifunctional electrocatalyst for OER and HER. Electrochim. Acta 2019, 298, 163–171.

[10]

Wang, Y.; Kong, B.; Zhao, D. Y.; Wang, H. T.; Selomulya, C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 2017, 15, 26–55.

[11]

Zheng, S. S.; Guo, X. T.; Xue, H. G.; Pan, K. M.; Liu, C. S.; Pang, H. Facile one-pot generation of metal oxide/hydroxide@metal-organic framework composites: Highly efficient bifunctional electrocatalysts for overall water splitting. Chem. Commun. 2019, 55, 10904–10907.

[12]

Talib, S. H.; Lu, Z. S.; Yu, X. H.; Ahmad, K.; Bashir, B.; Yang, Z. X.; Li, J. Theoretical inspection of M1/PMA single-atom electrocatalyst: Ultra-high performance for water splitting (HER/OER) and oxygen reduction reactions (OER). ACS Catal. 2021, 11, 8929–8941.

[13]

Singh, T. I.; Rajeshkhanna, G.; Pan, U. N.; Kshetri, T.; Lin, H.; Kim, N. H.; Lee, J. H. Alkaline water splitting enhancement by MOF-derived Fe-Co-oxide/Co@NC-mNS heterostructure: Boosting OER and HER through defect engineering and in situ oxidation. Small 2021, 17, 2101312.

[14]

Su, J. W.; Xia, G. L.; Li, R.; Yang, Y.; Chen, J. T.; Shi, R. H.; Jiang, P.; Chen, Q. W. Co3ZnC/Co nano heterojunctions encapsulated in N-doped graphene layers derived from PBAs as highly efficient bi-functional OER and ORR electrocatalysts. J. Mater. Chem. A 2016, 4, 9204–9212.

[15]

Li, L.; Wang, B.; Zhang, G. W.; Yang, G.; Yang, T.; Yang, S.; Yang, S. C. Electrochemically modifying the electronic structure of IrO2 nanoparticles for overall electrochemical water splitting with extensive adaptability. Adv. Energy Mater. 2020, 10, 2001600.

[16]

Chen, D.; Lu, R. H.; Pu, Z. H.; Zhu, J. W.; Li, H. W.; Liu, F.; Hu, S.; Luo, X.; Wu, J. S.; Zhao, Y. et al. Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl. Catal. B: Environ. 2020, 279, 119396.

[17]

Fan, Y. X.; Zhang, X. D.; Zhang, Y. J.; Xie, X.; Ding, J.; Cai, J. L.; Li, B. J.; Lv, H. L.; Liu, L. Y.; Zhu, M. M. et al. Decoration of Ru/RuO2 hybrid nanoparticles on MoO2 plane as bifunctional electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2021, 604, 508–516.

[18]

Chen, G. B.; Wang, T.; Zhang, J.; Liu, P.; Sun, H. J.; Zhuang, X. D.; Chen, M. W.; Feng, X. L. Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 2018, 30, 1706279.

[19]

Cai, P. W.; Li, Y.; Wang, G. X.; Wen, Z. H. Alkaline–acid Zn-H2O fuel cell for the simultaneous generation of hydrogen and electricity. Angew. Chem., Int. Ed. 2018, 57, 3910–3915.

[20]

Zhang, Q.; Han, W. J.; Xu, Z. X.; Li, Y. L.; Chen, L.; Bai, Z. Y.; Yang, L.; Wang, X. L. Hollow waxberry-like cobalt-nickel oxide/S, N-codoped carbon nanospheres as a trifunctional electrocatalyst for OER, ORR, and HER. RSC Adv. 2020, 10, 27788–27793.

[21]

Guo, Y. Y.; Yuan, P. F.; Zhang, J. N.; Xia, H. C.; Cheng, F. Y.; Zhou, M. F.; Li, J.; Qiao, Y. Y.; Mu, S. C.; Xu, Q. Co2-CoN double active centers confined in N-doped carbon nanotube: Heterostructural engineering for trifunctional catalysis toward HER, ORR, OER, and Zn-air batteries driven water splitting. Adv. Funct. Mater. 2018, 28, 1805641.

[22]

Zhang, J. C.; Zhang, D. J.; Zhang, R. C.; Zhang, N. N.; Cui, C. C.; Zhang, J. R.; Jiang, B.; Yuan, B. Q.; Wang, T. Y.; Xie, H. et al. Facile synthesis of mesoporous and thin-walled Ni-Co sulfide nanotubes as efficient electrocatalysts for oxygen evolution reaction. ACS Appl. Energy Mater. 2018, 1, 495–502.

[23]

Guo, Y. N.; Tang, J.; Wang, Z. L.; Kang, Y. M.; Bando, Y.; Yamauchi, Y. Elaborately assembled core–shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy 2018, 47, 494–502.

[24]

Hua, Y. P.; Jiang, H.; Jiang, H. B.; Zhang, H. X.; Li, C. Z. Hierarchical porous CoS2 microboxes for efficient oxygen evolution reaction. Electrochim. Acta 2018, 278, 219–225.

[25]

Zhu, J. Q.; Ren, Z. Y.; Du, S. C.; Xie, Y.; Wu, J.; Meng, H. Y.; Xue, Y. Z.; Fu, H. G. Co-vacancy-rich Co1–xS nanosheets anchored on rGO for high-efficiency oxygen evolution. Nano Res. 2017, 10, 1819–1831.

[26]

Guan, C.; Liu, X. M.; Elshahawy, A. M.; Zhang, H.; Wu, H. J.; Pennycook, S. J.; Wang, J. Metal-organic framework derived hollow CoS2 nanotube arrays: An efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horiz. 2017, 2, 342–348.

[27]

Li, Y. G.; Fu, X.; Zhu, W. X.; Gong, J. D.; Sun, J.; Zhang, D. H.; Wang, J. L. Self-ZIF template-directed synthesis of a CoS nanoflake array as a Janus electrocatalyst for overall water splitting. Inorg. Chem. Front. 2019, 6, 2090–2095.

[28]

Wang, K. X.; Wang, X. Y.; Li, Z. J.; Yang, B.; Ling, M.; Gao, X.; Lu, J. G.; Shi, Q. R.; Lei, L. C.; Wu, G. et al. Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides. Nano Energy 2020, 77, 105162.

[29]

Men, Y.; Li, P.; Zhou, J. H.; Cheng, G. Z.; Chen, S. L.; Luo, W. Tailoring the electronic structure of Co2P by N doping for boosting hydrogen evolution reaction at all pH values. ACS Catal. 2019, 9, 3744–3752.

[30]

Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

[31]

Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

[32]

Yong, J. L.; Chen, F.; Li, M. J.; Yang, Q.; Fang, Y.; Huo, J. L.; Hou, X. Remarkably simple achievement of superhydrophobicity, superhydrophilicity, underwater superoleophobicity, underwater superoleophilicity, underwater superaerophobicity, and underwater superaerophilicity on femtosecond laser ablated PDMS surfaces. J. Mater. Chem. A 2017, 5, 25249–25257.

[33]

Tian, Y. M.; Lin, Z. W.; Yu, J.; Zhao, S. J.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Qi, Y. F.; Zhang, H. S.; Li, R. M. et al. Superaerophobic quaternary Ni-Co-S-P nanoparticles for efficient overall water-splitting. ACS Sustainable Chem. Eng. 2019, 7, 14639–14646.

[34]

Chen, X. B.; Sheng, L.; Li, S. X.; Cui, Y.; Lin, T. R.; Que, X. Y.; Du, Z. H.; Zhang, Z. Y.; Peng, J.; Ma, H. L. et al. Facile syntheses and in-situ study on electrocatalytic properties of superaerophobic CoxP-nanoarray in hydrogen evolution reaction. Chem. Eng. J. 2021, 426, 131029.

[35]

Yao, Y. L.; He, J. M.; Yang, X.; Peng, L.; Zhu, X. D.; Li, K. S.; Qu, M. N. Superhydrophilic/underwater superaerophobic self-supporting CuS/Cu foam electrode for efficient oxygen evolution reaction. Colloid. Surf. A Physicochem. Eng. Aspects 2022, 634, 127934.

[36]

Shen, J. J.; Li, B.; Zheng, Y.; Dai, Z. Y.; Li, J. L.; Bao, X. Z.; Guo, J. P.; Yu, X. Q.; Guo, Y. Z. et al. Engineering the composition and structure of superaerophobic nanosheet array for efficient hydrogen evolution. Chem. Eng. J. 2022, 433, 133517.

[37]

Yong, J. L.; Chen, F.; Fang, Y.; Huo, J. L.; Yang, Q. Z.; Zhang, J.; Bian, H.; Hou, X. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl. Mater. Interfaces 2017, 9, 39863–39871.

[38]

Quan, H. C.; Yang, W.; Lapeyriere, M.; Schaible, E.; Ritchie, R. O.; Meyers, M. A. Structure and mechanical adaptability of a modern elasmoid fish scale from the common carp. Matter 2020, 3, 842–863.

[39]

Liu, H. X.; Liu, X. J.; Mao, Z. Y.; Zhao, Z.; Peng, X. Y.; Luo, J.; Sun, X. M. Plasma-activated Co3(PO4)2 nanosheet arrays with Co3+-rich surfaces for overall water splitting. J. Power Sources 2018, 400, 190–197.

[40]

Wang, M.; Zhang, W. J.; Zhang, F. F.; Zhang, Z. H.; Tang, B.; Li, J. P.; Wang, X. G. Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 2019, 9, 1489–1502.

[41]

Waghmode, R. B.; Jadhav, H. S.; Kanade, K. G.; Torane, A. P. Morphology-controlled synthesis of NiCo2O4 nanoflowers on stainless steel substrates as high-performance supercapacitors. Mater. Sci. Energy Technol. 2019, 2, 556–564.

[42]

Lin, E. Z.; Huang, R.; Wu, J.; Kang, Z. H.; Ke, K. H.; Qin, N.; Bao, D. H. Recyclable CoFe2O4 modified BiOCl hierarchical microspheres utilizing photo, photothermal, and mechanical energy for organic pollutant degradation. Nano Energy 2021, 89, 106403.

[43]

Guo, R. N.; Qi, X. Y.; Zhang, X. Y.; Zhang, H. X.; Cheng, X. W. Synthesis of Ag2CO3/α-Fe2O3 heterojunction and it high visible light driven photocatalytic activity for elimination of organic pollutants. Sep. Purif. Technol. 2019, 211, 504–513.

[44]

Si, H. N.; Liao, Q. L.; Zhang, Z.; Li, Y.; Yang, X. H.; Zhang, G. J.; Kang, Z.; Zhang, Y. An innovative design of perovskite solar cells with Al2O3 inserting at ZnO/perovskite interface for improving the performance and stability. Nano Energy 2016, 22, 223–231.

[45]

Liu, Y.; Zhang, M. F.; Nie, Y.; Zhang, J.; Wang, J. Z. Growth of YAG: Ce3+-Al2O3 eutectic ceramic by HDS method and its application for white LEDs. J. Eur. Ceram. Soc. 2017, 37, 4931–4937.

[46]

Takahashi, K.; Imamura, M.; Hirama, K.; Kasu, M. Electronic states of NO2-exposed H-terminated diamond/Al2O3 heterointerface studied by synchrotron radiation photoemission and X-ray absorption spectroscopy. Appl. Phys. Lett. 2014, 104, 072101.

[47]

Nakamura, S.; Yamamoto, A. Electrodeposition of pyrite (FeS2) thin films for photovoltaic cells. Sol. Energy Mater. Sol. Cells 2001, 65, 79–85.

[48]

Cheng, N. Y.; Liu, Q.; Asiri, A. M.; Xing, W.; Sun, X. P. A Fe-doped Ni3S2 particle film as a high-efficiency robust oxygen evolution electrode with very high current density. J. Mater. Chem. A. 2015, 3, 23207–23212.

[49]

Guo, M. R.; Qayum, A.; Dong, S.; Jiao, X. L.; Chen, D. R.; Wang, T. In situ conversion of metal (Ni, Co, or Fe) foams into metal sulfide (Ni3S2, Co9S8, or FeS) foams with surface grown N-doped carbon nanotube arrays as efficient superaerophobic electrocatalysts for overall water splitting. J. Mater. Chem. A. 2020, 8, 9239–9247.

[50]

Gao, Y.; Mi, L. W.; Wei, W. T.; Cui, S. Z.; Zheng, Z.; Hou, H. W.; Chen, W. H. Double metal ions synergistic effect in hierarchical multiple sulfide microflowers for enhanced supercapacitor performance. ACS Appl. Mater. Interfaces 2015, 7, 4311–4319.

[51]

Cui, X. D.; Xie, Z. Q.; Wang, Y. Novel CoS2 embedded carbon nanocages by direct sulfurizing metal-organic frameworks for dye-sensitized solar cells. Nanoscale 2016, 8, 11984–11992.

[52]

Shaat, S. K. K.; Swart, H. C.; Ntwaeaborwa, O. M. Tunable and white photoluminescence from Tb3+-Eu3+ activated Ca0.3Sr0.7Al2O4 phosphors and analysis of chemical states by X-ray photoelectron spectroscopy. J. Alloys Compd. 2014, 587, 600–605.

[53]

Andreu, N.; Flahaut, D.; Dedryvère, R.; Minvielle, M.; Martinez, H.; Gonbeau, D. XPS investigation of surface reactivity of electrode materials: Effect of the transition metal. ACS Appl. Mater. Interfaces 2015, 7, 6629–6636.

[54]

Mansour, A. N. Nickel monochromated Al Kα XPS spectra from the physical electronics model 5400 spectrometer. Surf. Sci. Spectra 1994, 3, 221–230.

[55]

Strydom, C. A.; Strydom, H. J. X-ray photoelectron spectroscopy studies of some cobalt(II) nitrate complexes. Inorg. Chim. Acta 1989, 159, 191–195.

Video
12274_2022_5373_MOESM3_ESM.mp4
12274_2022_5373_MOESM4_ESM.mp4
12274_2022_5373_MOESM5_ESM.mp4
File
12274_2022_5373_MOESM1_ESM.pdf (1.6 MB)
12274_2022_5373_MOESM2_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 September 2022
Revised: 23 November 2022
Accepted: 02 December 2022
Published: 19 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51774028).

Return