Journal Home > Volume 16 , Issue 5

Switchable adhesives have attracted widespread attention due to their strong reusability and adaptability to operate stably in complex environments. However, the simple fabrication of adhesive structures and reliable control of adhesion remain challenging. Here, we developed a neodymium iron boron/polydimethylsiloxane (NdFeB/PDMS) magnetic composite with optimal mechanical and magnetic performance. Then we fabricated lamellar structures and setal arrays using a molding and magnetic field-induced process, imitating the multi-level adhesion system of gecko feet. The lamellar can be deformed under the action of a magnetic field to control the adhesion, and the setal array is used to enhance adhesion and provide self-cleanability to the adhering surface. Switchable adhesion was realized by applying an external magnetic field, where the maximum adhesion strength was 5.1 kPa, and the switchable range was within 40%. Through finite element analysis simulations and experimental verification, it was proved that the adhesion force variation was ascribed to the magnetic field-induced surface deformation. Finally, we installed the adhesive on the end of the robotic arm, realizing the transfer of the target object. This work provides a simple method to fabricate a gecko-like surface and a practical strategy to realize switchable adhesion, which sheds light on broad application potential in production lines, medical products, and more.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Magnetic-field-driven switchable adhesion of NdFeB/PDMS composite with gecko-like surface

Show Author's information Xiaotian ShiLei Yang( )Sheng LiYanjie GuoZhibin Zhao
Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi'an 710049, China

Abstract

Switchable adhesives have attracted widespread attention due to their strong reusability and adaptability to operate stably in complex environments. However, the simple fabrication of adhesive structures and reliable control of adhesion remain challenging. Here, we developed a neodymium iron boron/polydimethylsiloxane (NdFeB/PDMS) magnetic composite with optimal mechanical and magnetic performance. Then we fabricated lamellar structures and setal arrays using a molding and magnetic field-induced process, imitating the multi-level adhesion system of gecko feet. The lamellar can be deformed under the action of a magnetic field to control the adhesion, and the setal array is used to enhance adhesion and provide self-cleanability to the adhering surface. Switchable adhesion was realized by applying an external magnetic field, where the maximum adhesion strength was 5.1 kPa, and the switchable range was within 40%. Through finite element analysis simulations and experimental verification, it was proved that the adhesion force variation was ascribed to the magnetic field-induced surface deformation. Finally, we installed the adhesive on the end of the robotic arm, realizing the transfer of the target object. This work provides a simple method to fabricate a gecko-like surface and a practical strategy to realize switchable adhesion, which sheds light on broad application potential in production lines, medical products, and more.

Keywords: magnetic field, switchable adhesives, dry adhesion, gecko bionics

References(41)

[1]

Autumn, K.; Liang, Y. A.; Hsieh, S. T.; Zesch, W.; Chan, W. P.; Kenny, T. W.; Fearing, R.; Full, R. J. Adhesive force of a single gecko foot-hair. Nature 2000, 405, 681–685.

[2]

Yeung, T.; Georges, P. C.; Flanagan, L. A.; Marg, B.; Ortiz, M.; Funaki, M.; Zahir, N.; Ming, W. Y.; Weaver, V.; Janmey, P. A. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 2005, 60, 24–34.

[3]

Chen, S. C.; Wang, Y. F.; Yang, L.; Karouta, F.; Sun, K. Electron-induced perpendicular graphene sheets embedded porous carbon film for flexible touch sensors. Nano-Micro Lett. 2020, 12, 136.

[4]

Xiang, S. X.; Tang, J. F.; Yang, L.; Guo, Y. J.; Zhao, Z. B.; Zhang, W. Q. Deep learning-enabled real-time personal handwriting electronic skin with dynamic thermoregulating ability. npj Flex. Electron. 2022, 6, 59.

[5]

Wei, X.; Li, H.; Yue, W. J.; Gao, S.; Chen, Z. X.; Li, Y.; Shen, G. Z. A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 2022, 5, 1481–1501.

[6]

Croll, A. B.; Hosseini, N.; Bartlett, M. D. Switchable adhesives for multifunctional interfaces. Adv. Mater. Technol. 2019, 4, 1900193.

[7]

Gan, D. L.; Shuai, T.; Wang, X.; Huang, Z. Q.; Ren, F. Z.; Fang, L. M.; Wang, K. F.; Xie, C. M.; Lu, X. Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics. Nano-Micro Lett. 2020, 12, 169.

[8]

Jagota, A.; Hui, C. Y. Adhesion, friction, and compliance of bio-mimetic and bio-inspired structured interfaces. Mater. Sci. Eng. R Rep. 2011, 72, 253–292.

[9]

Shull, K. R. Contact mechanics and the adhesion of soft solids. Mater. Sci. Eng. R Rep. 2002, 36, 1–45.

[10]

Creton, C.; Ciccotti, M. Fracture and adhesion of soft materials: A review. Rep. Prog. Phys. 2016, 79, 046601.

[11]

Wu, J.; Kim, S.; Chen, W. Q.; Carlson, A.; Hwang, K. C.; Huang, Y. G.; Rogers, J. A. Mechanics of reversible adhesion. Soft Matter 2011, 7, 8657–8662.

[12]

Kim, S.; Wu, J. A.; Carlson, A.; Jin, S. H.; Kovalsky, A.; Glass, P.; Liu, Z. J.; Ahmed, N.; Elgan, S. L.; Chen, W. Q. et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc. Natl. Acad. Sci. USA 2010, 107, 17095–17100.

[13]

Gillies, A. G.; Kwak, J.; Fearing, R. S. Controllable particle adhesion with a magnetically actuated synthetic gecko adhesive. Adv. Funct. Mater. 2013, 23, 3256–3261.

[14]

Drotlef, D. M.; Blümler, P.; del Campo, A. Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv. Mater. 2014, 26, 775–779.

[15]

Krahn, J.; Bovero, E.; Menon, C. Magnetic field switchable dry adhesives. ACS Appl. Mater. Interfaces 2015, 7, 2214–2222.

[16]

Risan, J.; Croll, A. B.; Azarmi, F. Compliance switching for adhesion control. J. Polym. Sci. B Pol. Phys. 2015, 53, 48–57.

[17]

Wang, W. D.; Timonen, J. V. I.; Carlson, A.; Drotlef, D. M.; Zhang, C. T.; Kolle, S.; Grinthal, A.; Wong, T. S.; Hatton, B.; Kang, S. H. et al. Multifunctional ferrofluid-infused surfaces with reconfigurable multiscale topography. Nature 2018, 559, 77–82.

[18]
Diller, S.; Majidi, C.; Collins, S. H. A lightweight, low-power electroadhesive clutch and spring for exoskeleton actuation. In 2016 IEEE International Conference on Robotics and Automation, Stockholm, 2016, pp 682–689.
[19]

Graule, M. A.; Chirarattananon, P.; Fuller, S. B.; Jafferis, N. T.; Ma, K. Y.; Spenko, M.; Kornbluh, R.; Wood, R. J. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science 2016, 352, 978–982.

[20]
Germann, J.; Schubert, B.; Floreano, D. Stretchable electroadhesion for soft robots. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, 2014, pp 3933–3938.
[21]

Diller, S. B.; Collins, S. H.; Majidi, C. The effects of electroadhesive clutch design parameters on performance characteristics. J. Intell. Mater. Syst. Struct. 2018, 29, 3804–3828.

[22]

Gu, G. Y.; Zou, J.; Zhao, R. K.; Zhao, X. H.; Zhu, X. Y. Soft wall-climbing robots. Sci. Robot. 2018, 3, eaat2874.

[23]

Akiyama, H.; Yoshida, M. Photochemically reversible liquefaction and solidification of single compounds based on a sugar alcohol scaffold with multi azo-arms. Adv. Mater. 2012, 24, 2353–2356.

[24]

Akiyama, H.; Kanazawa, S.; Okuyama, Y.; Yoshida, M.; Kihara, H.; Nagai, H.; Norikane, Y.; Azumi, R. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives. ACS Appl. Mater. Interfaces 2014, 6, 7933–7941.

[25]

Saito, S.; Nobusue, S.; Tsuzaka, E.; Yuan, C. X.; Mori, C.; Hara, M.; Seki, T.; Camacho, C.; Irle, S.; Yamaguchi, S. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase. Nat. Commun. 2016, 7, 12094.

[26]

Kizilkan, E.; Strueben, J.; Staubitz, A.; Gorb, S. N. Bioinspired photocontrollable microstructured transport device. Sci. Robot. 2017, 2, eaak9454.

[27]

Chan, E. P.; Karp, J. M.; Langer, R. S. A "self-pinning" adhesive based on responsive surface wrinkles. J. Polym. Sci. B Pol. Phys. 2011, 49, 40–44.

[28]

Jeong, J. W.; Yang, S. R.; Hur, Y. H.; Kim, S. W.; Baek, K. M.; Yim, S.; Jang, H. I.; Park, J. H.; Lee, S. Y.; Park, C. O. et al. High-resolution nanotransfer printing applicable to diverse surfaces via interface-targeted adhesion switching. Nat. Commun. 2014, 5, 5387.

[29]

Yi, H.; Seong, M.; Sun, K.; Hwang, I.; Lee, K.; Cha, C.; Kim, T. I.; Jeong, H. E. Wet-responsive, reconfigurable, and biocompatible hydrogel adhesive films for transfer printing of nanomembranes. Adv. Funct. Mater. 2018, 28, 1706498.

[30]

Eisenhaure, J. D.; Xie, T.; Varghese, S.; Kim, S. Microstructured shape memory polymer surfaces with reversible dry adhesion. ACS Appl. Mater. Interfaces 2013, 5, 7714–7717.

[31]

Ye, Z.; Lum, G. Z.; Song, S.; Rich, S.; Sitti, M. Phase change of gallium enables highly reversible and switchable adhesion. Adv. Mater. 2016, 28, 5088–5092.

[32]

Shahsavan, H.; Salili, S. M.; Jákli, A.; Zhao, B. X. Thermally active liquid crystal network gripper mimicking the self-peeling of gecko toe pads. Adv. Mater. 2017, 29, 1604021.

[33]

Northen, M. T.; Greiner, C.; Arzt, E.; Turner, K. L. A gecko-inspired reversible adhesive. Adv. Mater. 2008, 20, 3905–3909.

[34]

Wang, S. H.; Luo, H. Y.; Linghu, C. H.; Song, J. Z. Elastic energy storage enabled magnetically actuated, octopus-inspired smart adhesive. Adv. Funct. Mater. 2021, 31, 2009217.

[35]

Zhao, J. S.; Li, X. Y.; Tan, Y.; Liu, X. K.; Lu, T. P.; Shi, M. X. Smart adhesives via magnetic actuation. Adv. Mater. 2022, 34, 2107748.

[36]

Miao, L. M.; Song, Y.; Ren, Z. Y.; Xu, C.; Wan, J.; Wang, H. B.; Guo, H.; Xiang, Z. H.; Han, M. D.; Zhang, H. X. 3D temporary-magnetized soft robotic structures for enhanced energy harvesting. Adv. Mater. 2021, 33, 2102691.

[37]

Lee, S.; Yim, C.; Kim, W.; Jeon, S. Magnetorheological elastomer films with tunable wetting and adhesion properties. ACS Appl. Mater. Interfaces 2015, 7, 19853–19856.

[38]

Barthlott, W.; Mail, M.; Bhushan, B.; Koch, K. Plant surfaces: Structures and functions for biomimetic innovations. Nano-Micro Lett. 2017, 9, 23.

[39]

Li, S.; Xiao, P.; Zhou, W.; Liang, Y.; Kuo, S. W.; Chen, T. Bioinspired nanostructured superwetting thin-films in a self-supported form enabled “miniature umbrella” for weather monitoring and water rescue. Nano-Micro Lett. 2021, 14, 32.

[40]

Ball, P. Engineering-Shark skin and other solutions. Nature 1999, 400, 507–509.

[41]

Shen, Y. F.; Zhang, Y. J.; Zhang, Q. X.; Niu, L.; You, T. Y.; Ivaska, A. Immobilization of ionic liquid with polyelectrolyte as carrier. Chem. Commun. 2005, 4193–4195.

Video
12274_2022_5372_MOESM2_ESM.mp4
12274_2022_5372_MOESM3_ESM.mp4
12274_2022_5372_MOESM4_ESM.mp4
12274_2022_5372_MOESM5_ESM.mp4
File
12274_2022_5372_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 September 2022
Revised: 23 November 2022
Accepted: 30 November 2022
Published: 17 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors thank the National Nature Science Foundation of China (No. 52275210), the Natural Science Foundation of Shaanxi Province (No. 2022JM-175), the Fundamental Research Funds for the Central Universities, and SEM facility of Instrument Analysis Center of Xi'an Jiaotong University, China.

Return