Journal Home > Volume 16 , Issue 5

Developing corrosion resistance bifunctional electrocatalysts with high activity and stability toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), especially electrolysis in seawater, is of prime significance but still pressingly challenging. Herein, in-situ introduced PtOx on the derivative amorphous NiOn is prepared via heat treatment of Ni ZIF-L nanosheets on nickel foam under low temperature (PtOx-NiOn/NF). The synthesized PtOx-NiOn/NF possesses suprahydrophilic and aerophilic surface, and then in favor of intimate contact between the electrode and electrolyte and release of the generated gas bubbles during the electrocatalysis. As a result, the in-situ PtOx-NiOn/NF electrode presents outstanding bifunctional activity, which only requires extremely low overpotentials of 32 and 240 mV to reach a current density of 10 mA·cm–2 for HER and OER, respectively, which exceeds most of the electrocatalysts previously developed and even suppresses commercial Pt/C and RuO2 electrodes. As for two-electrode cell organized by PtOx-NiOn/NF, the voltages down to 1.57 and 1.58 V are necessary to drive 10 mA·cm–2 with remarkable durability in 1 M KOH and alkaline seawater, respectively, along with remarkable stability. Moreover, a low cell voltage of 1.88 V is needed to achieve 1,000 mA·cm–2 toward water-splitting under industrial conditions. This study provides a new idea for designing in-situ amorphous metal oxide bifunctional electrocatalyst with strong Pt–support interaction for overall water splitting.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Amorphous NiOn coupled with trace PtOx toward superior electrocatalytic overall water splitting in alkaline seawater media

Show Author's information Wenli Yu1,2Hongru Liu2Ying Zhao2Yunlei Fu2Weiping Xiao3Bin Dong1Zexing Wu2( )Yongming Chai1( )Lei Wang2( )
State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum (East China), Qingdao 266580, China
Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Science, Nanjing Forestry University, Nanjing 210037, China

Abstract

Developing corrosion resistance bifunctional electrocatalysts with high activity and stability toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), especially electrolysis in seawater, is of prime significance but still pressingly challenging. Herein, in-situ introduced PtOx on the derivative amorphous NiOn is prepared via heat treatment of Ni ZIF-L nanosheets on nickel foam under low temperature (PtOx-NiOn/NF). The synthesized PtOx-NiOn/NF possesses suprahydrophilic and aerophilic surface, and then in favor of intimate contact between the electrode and electrolyte and release of the generated gas bubbles during the electrocatalysis. As a result, the in-situ PtOx-NiOn/NF electrode presents outstanding bifunctional activity, which only requires extremely low overpotentials of 32 and 240 mV to reach a current density of 10 mA·cm–2 for HER and OER, respectively, which exceeds most of the electrocatalysts previously developed and even suppresses commercial Pt/C and RuO2 electrodes. As for two-electrode cell organized by PtOx-NiOn/NF, the voltages down to 1.57 and 1.58 V are necessary to drive 10 mA·cm–2 with remarkable durability in 1 M KOH and alkaline seawater, respectively, along with remarkable stability. Moreover, a low cell voltage of 1.88 V is needed to achieve 1,000 mA·cm–2 toward water-splitting under industrial conditions. This study provides a new idea for designing in-situ amorphous metal oxide bifunctional electrocatalyst with strong Pt–support interaction for overall water splitting.

Keywords: amorphous structure, hydrogen/oxygen evolution reaction, alkaline seawater splitting, ultralow Pt electrocatalyst

References(84)

[1]

Fang, W. S.; Huang, L.; Zaman, S.; Wang, Z. T.; Han, Y. J.; Xia, B. Y. Recent progress on two-dimensional electrocatalysis. Chem. Res. Chin. Univ. 2020, 36, 611–621.

[2]

Wang, J. S.; Zhang, Z. F.; Song, H. R.; Zhang, B.; Liu, J.; Shai, X. X.; Miao, L. Water dissociation kinetic-oriented design of nickel sulfides via tailored dual sites for efficient alkaline hydrogen evolution. Adv. Funct. Mater. 2021, 31, 2008578.

[3]

Liu, Y.; Feng, Q. Q.; Liu, W.; Li, Q.; Wang, Y. C.; Liu, B.; Zheng, L. R.; Wang, W.; Huang, L.; Chen, L. M. et al. Boosting interfacial charge transfer for alkaline hydrogen evolution via rational interior Se modification. Nano Energy 2021, 81, 105641.

[4]

Li, Z. J.; Li, H.; Li, M.; Hu, J. R.; Liu, Y. Y.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Iminodiacetonitrile induce-synthesis of two-dimensional PdNi/Ni@carbon nanosheets with uniform dispersion and strong interface bonding as an effective bifunctional eletrocatalyst in air-cathode. Energy Stor. Mater. 2021, 42, 118–128.

[5]

Niu, Y. L.; Gong, S. Q.; Liu, X.; Xu, C.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries. eScience 2022, 2, 546–556.

[6]

Niu, H. T.; Xia, C. F.; Huang, L.; Zaman, S.; Maiyalagan, T.; Guo, W.; You, B.; Xia, B. Y. Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chin. J. Catal. 2022, 43, 1459–1472.

[7]

Zhao, G.; Ma, W. X.; Wang, X. K.; Xing, Y. P.; Hao, S. H.; Xu, X. J. Self-water-absorption-type two-dimensional composite photocatalyst with high-efficiency water absorption and overall water-splitting performance. Adv. Powder Mater. 2022, 1, 100008.

[8]

Li, M.; Li, H.; Jiang, X. C.; Jiang, M. Q.; Zhan, X.; Fu, G. T.; Lee, J. M.; Tang, Y. W. Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. J. Mater. Chem. A 2021, 9, 2999–3006.

[9]

Li, Z. R.; Shen, T.; Hu, Y. Z.; Chen, K.; Lu, Y.; Wang, D. L. Progress on ordered intermetallic electrocatalysts for fuel cells application. Acta Phys. Chim. Sin. 2021, 37, 2010029.

[10]

Ling, M.; Li, N.; Jiang, B. B.; Tu, R. Y.; Wu, T.; Guan, P. L.; Ye, Y.; Cheong, W. C. M.; Sun, K. A.; Liu, S. J. et al. Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Res. 2022, 15, 1993–2002.

[11]

Xia, C. F.; Zhou, Y. S.; He, C. H.; Douka, A. I.; Guo, W.; Qi, K.; Xia, B. Y. Recent advances on electrospun nanomaterials for zinc-air batteries. Small Sci. 2021, 1, 2100010.

[12]
Ma, E. H.; Liu, X. Q.; Shen, T.; Wang, D. L. Constructing carbon-encapsulated NiFeV-based electrocatalysts by alkoxide-based self-template method for oxygen evolution reaction. J. Electrochem., in press, https://doi.org/10.13208/j.electrochem.211103.
[13]

Wang, W.; Wang, Z. X.; Hu, Y. C.; Liu, Y. C.; Chen, S. L. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface. eScience 2022, 2, 438–444.

[14]

Yang, Q. F.; Zhu, B. T.; Wang, F.; Zhang, C. J.; Cai, J. H.; Jin, P.; Feng, L. Ru/NC heterointerfaces boost energy-efficient production of green H2 over a wide pH range. Nano Res. 2022, 15, 5134–5142.

[15]

Xu, X. L.; Wang, S.; Guo, S. Q.; Hui, K. S.; Ma, J. M.; Dinh, D. A.; Hui, K. N.; Wang, H.; Zhang, L. P.; Zhou, G. W. Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn-air battery. Adv. Powder Mater. 2022, 1, 100027.

[16]

Gupta, S.; Patel, N.; Fernandes, R.; Kadrekar, R.; Dashora, A.; Yadav, A. K.; Bhattacharyya, D.; Jha, S. N.; Miotello, A.; Kothari, D. C. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl. Catal. B: Environ. 2016, 192, 126–133.

[17]

Guo, X.; Wan, X.; Liu, Q. T.; Li, Y. C.; Li, W. L.; Shui, J. L. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction. eScience 2022, 2, 304–310.

[18]

Pi, C. R.; Huang, C.; Yang, Y. X.; Song, H.; Zhang, X. M.; Zheng, Y.; Gao, B.; Fu, J. J.; Chu, P. K.; Huo, K. F. In situ formation of N-doped carbon-coated porous MoP nanowires: A highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range. Appl. Catal. B: Environ. 2020, 263, 118358.

[19]

Li, Z. J.; Wu, X. D.; Jiang, X.; Shen, B. B.; Teng, Z. S.; Sun, D. M.; Fu, G. T.; Tang, Y. W. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv. Powder Mater. 2022, 1, 100020.

[20]

Dong, B.; Xie, J. Y.; Tong, Z.; Chi, J. Q.; Zhou, Y. N.; Ma, X.; Lin, Z. Y.; Wang, L.; Chai, Y. M. Synergistic effect of metallic nickel and cobalt oxides with nitrogen-doped carbon nanospheres for highly efficient oxygen evolution. Chin. J. Catal. 2020, 41, 1782–1789.

[21]

Lei, Y. P.; Wang, Y. C.; Liu, Y.; Song, C. Y.; Li, Q.; Wang, D. S.; Li, Y. D. Designing atomic active centers for hydrogen evolution electrocatalysts. Angew. Chem., Int. Ed. 2020, 59, 20794–20812.

[22]
Huang, Y. J.; Li, M.; Pan, F.; Zhu, Z. Y.; Sun, H. M.; Tang, Y. W.; Fu, G. T. Plasma-induced Mo-doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting. Carbon Energy, in press, https://doi.org/10.1002/cey2.279.
[23]

Tang, T. M.; Li, S. S.; Sun, J. R.; Wang, Z. L.; Guan, J. Q. Advances and challenges in two-dimensional materials for oxygen evolution. Nano Res. 2022, 15, 8714–8750.

[24]

Gong, L. Q.; Yang, H.; Wang, H. M.; Qi, R. J.; Wang, J. L.; Chen, S. H.; You, B.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Corrosion formation and phase transformation of nickel-iron hydroxide nanosheets array for efficient water oxidation. Nano Res. 2021, 14, 4528–4533.

[25]

Jin, H. Y.; Sultan, S.; Ha, M. R.; Tiwari, J. N.; Kim, M. G.; Kim, K. S. Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution. Adv. Funct. Mater. 2020, 30, 2000531.

[26]

Li, Z.; Niu, W. H.; Yang, Z. Z.; Kara, A.; Wang, Q.; Wang, M. Y.; Gu, M.; Feng, Z. X.; Du, Y. G.; Yang, Y. Boosting alkaline hydrogen evolution: The dominating role of interior modification in surface electrocatalysis. Energy Environ. Sci. 2020, 13, 3110–3118.

[27]

Zhang, M. C.; Sui, X.; Zhang, X.; Niu, M.; Li, C. Q.; Wan, H. Q.; Qiao, Z. A.; Xie, H. J.; Li, X. Y. Multi-defects engineering of NiCo2O4 for catalytic propane oxidation. Appl. Surf. Sci. 2022, 600, 154040.

[28]

Zhang, X. Y.; Liu, T. Y.; Guo, T.; Han, X. Y.; Mu, Z. Y.; Chen, Q.; Jiang, J. M.; Yan, J.; Yuan, J. R.; Wang, D. Z. et al. Controlling atomic phosphorous-mounting surfaces of ultrafine W2C nanoislands monodispersed on the carbon frameworks for enhanced hydrogen evolution. Chin. J. Catal. 2021, 42, 1798–1807.

[29]

Xue, Q.; Bai, X. Y.; Zhao, Y.; Li, Y. N.; Wang, T. J.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B.; Chen, Y. Au core-PtAu alloy shell nanowires for formic acid electrolysis. J. Energy Chem. 2022, 65, 94–102.

[30]

Wang, T. J.; Jiang, Y. C.; He, J. W.; Li, F. M.; Ding, Y.; Chen, P.; Chen, Y. Porous palladium phosphide nanotubes for formic acid electrooxidation. Carbon Energy 2022, 4, 283–293.

[31]

Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

[32]

Cao, L. M.; Hu, Y. W.; Tang, S. F.; Iljin, A.; Wang, J. W.; Zhang, Z. M.; Lu, T. B. Fe-CoP electrocatalyst derived from a bimetallic prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 2018, 5, 1800949.

[33]

Singh, V. K.; Nakate, U. T.; Bhuyan, P.; Chen, J. Y.; Tran, D. T.; Park, S. Mo/Co doped 1T-VS2 nanostructures as a superior bifunctional electrocatalyst for overall water splitting in alkaline media. J. Mater. Chem. A 2022, 10, 9067–9079.

[34]

Wu, Z. X.; Wu, H. B.; Niu, T. F.; Wang, S.; Fu, G. T.; Jin, W.; Ma, T. Y. Sulfurated metal-organic framework-derived nanocomposites for efficient bifunctional oxygen electrocatalysis and rechargeable zn-air battery. ACS Sustain. Chem. Eng. 2020, 8, 9226–9234.

[35]

Li, Z.; Niu, W. H.; Zhou, L.; Yang, Y. Phosphorus and aluminum codoped porous NiO nanosheets as highly efficient electrocatalysts for overall water splitting. ACS Energy Lett. 2018, 3, 892–898.

[36]

Lu, X. Y.; Pan, J.; Lovell, E.; Tan, T. H.; Ng, Y. H.; Amal, R. A sea-change: Manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy Environ. Sci. 2018, 11, 1898–1910.

[37]

Liu, Z.; Zhang, C. Z.; Liu, H.; Feng, L. G. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis. Appl. Catal. B: Environ. 2020, 276, 119165.

[38]

Yang, H. Y.; Chen, Z. L.; Hao, W. J.; Xu, H. B.; Guo, Y. H.; Wu, R. B. Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon. Appl. Catal. B: Environ. 2019, 252, 214–221.

[39]

Wang, J.; Mao, S. J.; Liu, Z. Y.; Wei, Z. Z.; Wang, H. Y.; Chen, Y. Q.; Wang, Y. Dominating role of Ni0 on the interface of Ni/NiO for enhanced hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 7139–7147.

[40]

Zhang, T.; Wu, M. Y.; Yan, D. Y.; Mao, J.; Liu, H.; Hu, W. B.; Du, X. W.; Ling, T.; Qiao, S. Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 2018, 43, 103–109.

[41]

Wang, J.; Xie, Y. N.; Yao, Y. Y.; Huang, X.; Willinger, M.; Shao, L. D. Ni/NiO nanoparticles on a phosphorous oxide/graphene hybrid for efficient electrocatalytic water splitting. J. Mater. Chem. A 2017, 5, 14758–14762.

[42]

Sun, Y.; Li, R.; Chen, X. X.; Wu, J.; Xie, Y.; Wang, X.; Ma, K. K.; Wang, L.; Zhang, Z.; Liao, Q. L. et al. A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Adv. Energy Mater. 2021, 11, 2003755.

[43]

Zaman, W. Q.; Sun, W.; Tariq, M.; Zhou, Z. H.; Farooq, U.; Abbas, Z.; Cao, L. M.; Yang, J. Iridium substitution in nickel cobaltite renders high mass specific OER activity and durability in acidic media. Appl. Catal. B: Environ. 2019, 244, 295–302.

[44]

Li, H. G.; Wang, J.; Qi, R. J.; Hu, Y. F.; Zhang, J.; Zhao, H. B.; Zhang, J. J.; Zhao, Y. F. Enhanced Fe 3d delocalization and moderate spin polarization in Fe-Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Appl. Catal. B: Environ. 2021, 285, 119778.

[45]

Zhao, F. Z.; Liu, H. C.; Zhu, H. Y.; Jiang, X. Y.; Zhu, L. Q.; Li, W. P.; Chen, H. N. Amorphous/amorphous Ni-P/Ni(OH)2 heterostructure nanotubes for an efficient alkaline hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 10169–10179.

[46]

He, D. P.; Zhang, L. B.; He, D. S.; Zhou, G.; Lin, Y.; Deng, Z. X.; Hong, X.; Wu, Y. E.; Chen, C.; Li, Y. D. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction. Nat. Commun. 2016, 7, 12362.

[47]

Zhao, Y.; Gao, Y. X.; Chen, Z.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L. Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl. Catal. B: Environ. 2021, 297, 120395.

[48]

Li, J. S.; Kong, L. X.; Wu, Z. X.; Zhang, S.; Yang, X. Y.; Sha, J. Q.; Liu, G. D. Polydopamine-assisted construction of cobalt phosphide encapsulated in N-doped carbon porous polyhedrons for enhanced overall water splitting. Carbon 2019, 145, 694–700.

[49]

Yu, W. L.; Chen, Z.; Fu, Y. L.; Xiao, W. P.; Dong, B.; Chai, Y. M.; Wu, Z. X.; Wang, L. Superb all-pH hydrogen evolution performances powered by ultralow Pt-decorated hierarchical Ni-Mo porous microcolumns. Adv. Funct. Mater. 2022, 2210855.

[50]

Yang, S.; Zhu, J. Y.; Chen, X. N.; Huang, M. J.; Cai, S. H.; Han, J. Y.; Li, J. S. Self-supported bimetallic phosphides with artificial heterointerfaces for enhanced electrochemical water splitting. Appl. Catal. B: Environ 2022, 304, 120914.

[51]

Gao, Y. X.; Chen, Z.; Zhao, Y.; Yu, W. L.; Jiang, X. L.; He, M. S.; Li, Z. J.; Ma, T. Y.; Wu, Z. X.; Wang, L. Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range. Appl. Catal. B: Environ. 2022, 303, 120879.

[52]

Lin, C.; Zhao, Y. H.; Zhang, H. J.; Xie, S. H.; Li, Y. F.; Li, X. P.; Jiang, Z.; Liu, Z. P. Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chem. Sci. 2018, 9, 6803–6812.

[53]

Li, Q.; Cheng, W. Y.; Zeng, C.; Zheng, X. F.; Sun, L. M.; Jiang, Q.; You, Y. Facile and rapid synthesis of Pt-NiOx/NiF composites as a highly efficient electrocatalyst for alkaline hydrogen evolution. Int. J. Hydrog. Energy 2022, 47, 7504–7510.

[54]

Xing, Z. C.; Han, C.; Wang, D. W.; Li, Q.; Yang, X. R. Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal. 2017, 7, 7131–7135.

[55]

Wang, L.; Zhu, Y. H.; Zeng, Z. H.; Lin, C.; Giroux, M.; Jiang, L.; Han, Y.; Greeley, J.; Wang, C.; Jin, J. Platinum-nickel hydroxide nanocomposites for electrocatalytic reduction of water. Nano Energy 2017, 31, 456–461.

[56]

Bian, Y. R.; Wang, H.; Gao, Z.; Hu, J. T.; Liu, D.; Dai, L. M. A facile approach to high-performance trifunctional electrocatalysts by substrate-enhanced electroless deposition of Pt/NiO/Ni on carbon nanotubes. Nanoscale 2020, 12, 14615–14625.

[57]

Shen, Y.; Li, S. X.; Wang, C. J.; Xu, Y. T.; Chao, Y. X.; Shi, C. Q.; Wen, M. Preparation and electrocatalytic property of three-dimensional nano-dendritic platinum oxide film. Surf. Interface Anal. 2022, 54, 524–533.

[58]

Zhan, Y. X.; Li, Y.; Yang, Z.; Wu, X. W.; Ge, M. Z.; Zhou, X. M.; Hou, J. J.; Zheng, X. N.; Lai, Y. C.; Pang, R. R. et al. Synthesis of a MoSx-O-PtOx electrocatalyst with high hydrogen evolution activity using a sacrificial counter-electrode. Adv. Sci. 2019, 6, 1801663.

[59]

Feng, K.; Zheng, H. C.; Zhang, D.; Yuan, G. T.; Chang, L. Y.; Chen, Y. F.; Zhong, J. Carbon nanotube supported PtOx nanoparticles with hybrid chemical states for efficient hydrogen evolution. J. Energy Chem. 2021, 58, 364–369.

[60]

Wen, Q. L.; Yang, K.; Huang, D. J.; Cheng, G.; Ai, X. M.; Liu, Y. W.; Fang, J. K.; Li, H. Q.; Yu, L.; Zhai, T. Y. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 2021, 11, 2102353.

[61]

Liu, Z. B.; Yu, C.; Niu, Y. Y.; Han, X. T.; Tan, X. Y.; Huang, H. W.; Zhao, C. T.; Li, S. F.; Guo, W.; Qiu, J. S. Graphite-graphene architecture stabilizing ultrafine Co3O4 nanoparticles for superior oxygen evolution. Carbon 2018, 140, 17–23.

[62]

Kim, B. K.; Kim, M. J.; Kim, J. J. Impact of surface hydrophilicity on electrochemical water splitting. ACS Appl. Mater. Interfaces 2021, 13, 11940–11947.

[63]

Kim, D.; Qin, X. Y.; Yan, B. Y.; Piao, Y. Z. Sprout-shaped Mo-doped CoP with maximized hydrophilicity and gas bubble release for high-performance water splitting catalyst. Chem. Eng. J. 2021, 408, 127331.

[64]

Lu, Z. Y.; Sun, M.; Xu, T. H.; Li, Y. J.; Xu, W. W.; Chang, Z.; Ding, Y.; Sun, X. M.; Jiang, L. Superaerophobic electrodes for direct hydrazine fuel cells. Adv. Mater. 2015, 27, 2361–2366.

[65]

Sun, H. C.; Li, L. F.; Humayun, M.; Zhang, H. M.; Bo, Y. N.; Ao, X.; Xu, X. F.; Chen, K.; Ostrikov, K.; Huo, K. F. et al. Achieving highly efficient pH-universal hydrogen evolution by superhydrophilic amorphous/crystalline Rh(OH)3/NiTe coaxial nanorod array electrode. Appl. Catal. B: Environ. 2022, 305, 121088.

[66]

Liu, W.; Wang, X. T.; Qu, J. K.; Liu, X. L.; Zhang, Z. F.; Guo, Y. Z.; Yin, H. Y.; Wang, D. H. Tuning Ni dopant concentration to enable co-deposited superhydrophilic self-standing Mo2C electrode for high-efficient hydrogen evolution reaction. Appl. Catal. B: Environ. 2022, 307, 121201.

[67]

Xie, Q. J.; Wang, Z.; Lin, L. K.; Shu, Y.; Zhang, J. J.; Li, C.; Shen, Y. H.; Uyama, H. Nanoscaled and atomic ruthenium electrocatalysts confined inside super-hydrophilic carbon nanofibers for efficient hydrogen evolution reaction. Small 2021, 17, 2102160.

[68]

Shen, J. J.; Li, B.; Zheng, Y.; Dai, Z. Y.; Li, J. L.; Bao, X. Z.; Guo, J. P.; Yu, X. Q.; Guo, Y.; Ge, M. Z. et al. Engineering the composition and structure of superaerophobic nanosheet array for efficient hydrogen evolution. Chem. Eng. J. 2022, 433, 133517.

[69]

Chen, X. B.; Sheng, L.; Li, S. X.; Cui, Y.; Lin, T. R.; Que, X. Y.; Du, Z. H.; Zhang, Z. Y.; Peng, J.; Ma, H. L. et al. Facile syntheses and in situ study on electrocatalytic properties of superaerophobic CoxP-nanoarray in hydrogen evolution reaction. Chem. Eng. J. 2021, 426, 131029.

[70]

Xu, Q.; Wang, P. C.; Wan, L.; Xu, Z.; Sultana, M. Z.; Wang, B. G. Superhydrophilic/superaerophobic hierarchical NiP2@MoO2/Co(Ni)MoO4 core–shell array electrocatalysts for efficient hydrogen production at large current densities. ACS Appl. Mater. Interfaces 2022, 14, 19448–19458.

[71]

Yu, W. H.; Huang, H.; Qin, Y. N.; Zhang, D.; Zhang, Y. Y.; Liu, K.; Zhang, Y.; Lai, J. P.; Wang, L. The synergistic effect of pyrrolic-N and pyridinic-N with Pt under strong metal–support interaction to achieve high-performance alkaline hydrogen evolution. Adv. Energy Mater. 2022, 12, 2200110.

[72]

Li, H. D.; Pan, Y.; Wang, Z. C.; Yu, Y. D.; Xiong, J.; Du, H. Y.; Lai, J. P.; Wang, L.; Feng, S. H. Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density. Nano Res. 2022, 15, 3056–3064.

[73]

Zhao, D.; Sun, K. A.; Cheong, W. C.; Zheng, L. R.; Zhang, C.; Liu, S. J.; Cao, X.; Wu, K. L.; Pan, Y.; Zhuang, Z. W. et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew. Chem., Int. Ed. 2020, 59, 8982–8990.

[74]

Li, J.; Huang, H.; Cao, X. X.; Wu, H. H.; Pan, K. M.; Zhang, Q. B.; Wu, N. T.; Liu, X. M. Template-free fabrication of MoP nanoparticles encapsulated in N-doped hollow carbon spheres for efficient alkaline hydrogen evolution. Chem. Eng. J. 2021, 416, 127677.

[75]

Lei, Y. Q.; Xu, T. T.; Ye, S. H.; Zheng, L. R.; Liao, P.; Xiong, W.; Hu, J.; Wang, Y. J.; Wang, J. P.; Ren, X. Z. et al. Engineering defect-rich Fe-doped NiO coupled Ni cluster nanotube arrays with excellent oxygen evolution activity. Appl. Catal. B: Environ. 2021, 285, 119809.

[76]

Ding, R.; Li, X. D.; Shi, W.; Xu, Q. L.; Liu, E. H. One-pot solvothermal synthesis of ternary Ni-Co-P micro/nano-structured materials for high performance aqueous asymmetric supercapacitors. Chem. Eng. J. 2017, 320, 376–388.

[77]

Li, P.; Zhao, G. Q.; Cui, P. X.; Cheng, N. Y.; Lao, M. M.; Xu, X.; Dou, S. X.; Sun, W. P. Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy 2021, 83, 105850.

[78]

Wu, J. X.; Xi, X. X.; Zhu, W.; Yang, Z.; An, P.; Wang, Y. J.; Li, Y. M.; Zhu, Y. F.; Yao, W. Q.; Jiang, G. Y. Boosting photocatalytic hydrogen evolution via regulating Pt chemical states. Chem. Eng. J. 2022, 442, 136334.

[79]

Tian, Z. Q.; Jiang, S. P.; Liang, Y. M.; Shen, P. K. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J. Phys. Chem. B 2006, 110, 5343–5350.

[80]

Fu, S. R.; Zhang, B. B.; Hu, H. Y.; Zhang, Y. J.; Bi, Y. P. ZnO nanowire arrays decorated with PtO nanowires for efficient solar water splitting. Catal. Sci. Technol. 2018, 8, 2789–2793.

[81]

Zhu, C. R.; Gao, D. Q.; Ding, J.; Chao, D. L.; Wang, J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem. Soc. Rev. 2018, 47, 4332–4356.

[82]

Wang, R. Y.; Liu, H. J.; Zhang, K.; Zhang, G.; Lan, H. C.; Qu, J. H. Ni(II)/Ni(III) redox couple endows Ni foam-supported Ni2P with excellent capability for direct ammonia oxidation. Chem. Eng. J. 2021, 404, 126795.

[83]

Goldsmith, Z. K.; Harshan, A. K.; Gerken, J. B.; Vörös, M.; Galli, G.; Stahl, S. S.; Hammes-Schiffer, S. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Proc. Natl. Acad. Sci. USA 2017, 114, 3050–3055.

[84]

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.

Video
12274_2022_5369_MOESM2_ESM.mp4
12274_2022_5369_MOESM3_ESM.mp4
12274_2022_5369_MOESM4_ESM.mp4
12274_2022_5369_MOESM5_ESM.mp4
File
12274_2022_5369_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 October 2022
Revised: 23 November 2022
Accepted: 02 December 2022
Published: 21 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The work received funding support from the National Natural Science Foundation of China (Nos. 22002068, 52272222, and 52072197), the Taishan Scholar Young Talent Program (No. tsqn201909114), the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), the Major Basic Research Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD09), the Project funded by China Postdoctoral Science Foundation (No. 2021M691700), the Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), the Major Scientific and Technological Innovation Project (No. 2019JZZY020405), the Natural Science Foundation of Shandong Province of China (Nos. ZR2019BB002 and ZR2018BB031), and the Postdoctoral Innovation Project of Shandong Province.

Return