Journal Home > Volume 16 , Issue 5

Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, the carbon nitride quantum dots (CNQDs) nanozymes with high nitrogen vacancies (NVs) were mass-productively prepared by a simple ultrasonic-crushing method assisted by propylene glycol. It was found that the NVs of CNQDs were stemmed from the selective breaking of surface N-(C)2 sites, accounting for 6.2%. Experiments and density functional theory (DFT) simulations have demonstrated that the presence of NVs can alter the local electron distribution and extend the π-electron delocalization to enhance the peroxidase-like activity. Biocompatible CNQDs could enter inside microorganisms by diffusion and elevate the bacteria-binding ability, which enhanced the accurate and rapid attack of ·OH to the microorganisms. The sterilization rate of CNQDs against Gram-negative bacteria (E. coli), Gram-positive bacteria (S. aureus, B. subtilis), and fungi (R. solani) reaches more than 99%. Thus, this work showed great potential for engineered nanozymes for broad-spectrum antibacterial in biomedicine and environmental protection.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biocompatible carbon nitride quantum dots nanozymes with high nitrogen vacancies enhance peroxidase-like activity for broad-spectrum antibacterial

Show Author's information Xiaohui Dai1Huan Liu1Wenxiao Du1Jie Su1Lingshuai Kong1Shouqing Ni2Jinhua Zhan1,3( )
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, China

Abstract

Nanozyme antibacterial agents with high enzyme-like catalytic activity and strong bacteria-binding ability have provided an alternative method to efficiently disinfect drug-resistance microorganism. Herein, the carbon nitride quantum dots (CNQDs) nanozymes with high nitrogen vacancies (NVs) were mass-productively prepared by a simple ultrasonic-crushing method assisted by propylene glycol. It was found that the NVs of CNQDs were stemmed from the selective breaking of surface N-(C)2 sites, accounting for 6.2%. Experiments and density functional theory (DFT) simulations have demonstrated that the presence of NVs can alter the local electron distribution and extend the π-electron delocalization to enhance the peroxidase-like activity. Biocompatible CNQDs could enter inside microorganisms by diffusion and elevate the bacteria-binding ability, which enhanced the accurate and rapid attack of ·OH to the microorganisms. The sterilization rate of CNQDs against Gram-negative bacteria (E. coli), Gram-positive bacteria (S. aureus, B. subtilis), and fungi (R. solani) reaches more than 99%. Thus, this work showed great potential for engineered nanozymes for broad-spectrum antibacterial in biomedicine and environmental protection.

Keywords: peroxidase-like activity, biocompatible, broad-spectrum antibacterial, carbon nitride quantum dots (CNQDs), nitrogen vacancies (NVs)

References(57)

[1]

Heo, N. S.; Shukla, S.; Oh, S. Y.; Bajpai, V. K.; Lee, S. U.; Cho, H. J.; Kim, S.; Kim, Y.; Kim, H. J.; Lee, S. Y. et al. Shape-controlled assemblies of graphitic carbon nitride polymer for efficient sterilization therapies of water microbial contamination via 2D g-C3N4 under visible light illumination. Mater. Sci. Eng. C 2019, 104, 109846.

[2]

Zeng, X. K.; Liu, Y.; Xia, Y.; Uddin, M. H.; Xia, D. H.; McCarthy, D. T.; Deletic, A.; Yu, J. G.; Zhang, X. W. Cooperatively modulating reactive oxygen species generation and bacteria-photocatalyst contact over graphitic carbon nitride by polyethylenimine for rapid water disinfection. Appl. Catal. B Environ. 2020, 274, 119095.

[3]

Wang, Y.; Yang, Y. N.; Shi, Y. R.; Song, H.; Yu, C. Z. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2020, 32, 1904106.

[4]
Liang, W. L.; Cheng, J. L.; Zhang, J. D.; Xiong, Q. Y.; Jin, M. J.; Zhao, J. H. pH-responsive on-demand alkaloids release from core-shell ZnO@ZIF-8 nanosphere for synergistic control of bacterial wilt disease. ACS Nano 2022, 16, 2762–2773.
DOI
[5]

Liang, W. L.; Xie, Z. G.; Cheng, J. L.; Xiao, D. X.; Xiong, Q. Y.; Wang, Q. W.; Zhao, J. H.; Gui, W. J. A light-triggered pH-responsive metal-organic framework for smart delivery of fungicide to control sclerotinia diseases of oilseed rape. ACS Nano 2021, 15, 6987–6997.

[6]

Wang, X. P.; Xie, H. C.; Wang, Z. Y.; He, K. L. Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids Surf. B Biointerfaces 2019, 173, 632–638.

[7]

Mei, L. Q.; Zhu, S.; Liu, Y. P.; Yin, W. Y.; Gu, Z. J.; Zhao, Y. L. An overview of the use of nanozymes in antibacterial applications. Chem. Eng. J. 2021, 418, 129431.

[8]

Gao, F.; Shao, T. Y.; Yu, Y. P.; Xiong, Y. J.; Yang, L. H. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nat. Commun. 2021, 12, 745.

[9]

He, S. Y.; Huang, J. Q.; Zhang, Q.; Zhao, W. A.; Xu, Z.; Zhang, W. Bamboo-like nanozyme based on nitrogen-doped carbon nanotubes encapsulating cobalt nanoparticles for wound antibacterial applications. Adv. Funct. Mater. 2021, 31, 2105198.

[10]

Tang, S. H.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater. 2018, 7, 1701503.

[11]

Gu, X.; Xu, Z. X.; Gu, L. P.; Xu, H. Y.; Han, F. X.; Chen, B.; Pan, X. J. Preparation and antibacterial properties of gold nanoparticles: A review. Environ. Chem. Lett. 2021, 19, 167–187.

[12]

Li, Q.; Lu, F.; Ye, H. L.; Yu, K.; Lu, B. T.; Bao, R.; Xiao, Y.; Dai, F. Y.; Lan, G. Q. Silver inlaid with gold nanoparticles: Enhanced antibacterial ability coupled with the ability to visualize antibacterial efficacy. ACS Sustainable Chem. Eng. 2018, 6, 9813–9821.

[13]

Tu, Y. S.; Li, P.; Sun, J. J.; Jiang, J.; Dai, F. F.; Li, C. Z.; Wu, Y. Y.; Chen, L.; Shi, G. S.; Tan, Y. W. et al. Remarkable antibacterial activity of reduced graphene oxide functionalized by copper ions. Adv. Funct. Mater. 2021, 31, 2008018.

[14]

Zhang, X. C.; Zhang, Z. C.; Shu, Q. M.; Xu, C.; Zheng, Q. Q.; Guo, Z.; Wang, C.; Hao, Z. X.; Liu, X.; Wang, G. Q. et al. Copper clusters: An effective antibacterial for eradicating multidrug-resistant bacterial infection in vitro and in vivo. Adv. Funct. Mater. 2021, 31, 2008720.

[15]

Yang, P.; Pageni, P.; Rahman, M. A.; Bam, M.; Zhu, T. Y.; Chen, Y. P.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Gold nanoparticles with antibiotic-metallopolymers toward broad-spectrum antibacterial effects. Adv. Healthc. Mater. 2019, 8, 1800854.

[16]

Cao, W. B.; Yue, L.; Zhang, Y.; Wang, Z. P. Photodynamic chitosan functionalized MoS2 nanocomposite with enhanced and broad-spectrum antibacterial activity. Carbohydr. Polym. 2022, 277, 118808.

[17]

Lu, W. H.; Chen, J.; Kong, L. S.; Zhu, F.; Feng, Z. Y.; Zhan, J. H. Oxygen vacancies modulation Mn3O4 nanozyme with enhanced oxidase-mimicking performance for L-cysteine detection. Sens. Actuat. B Chem. 2021, 333, 129560.

[18]

Lu, W. H.; Yuan, M.; Chen, J.; Zhang, J. X.; Kong, L. S.; Feng, Z. Y.; Ma, X. C.; Su, J.; Zhan, J. H. Synergistic Lewis acid-base sites of ultrathin porous Co3O4 nanosheets with enhanced peroxidase-like activity. Nano Res. 2021, 14, 3514–3522.

[19]

Qi, M. Y.; Pan, H.; Shen, H. D.; Xia, X. M.; Wu, C.; Han, X. K.; He, X. Y.; Tong, W.; Wang, X.; Wang, Q. Nanogel multienzyme mimics synthesized by biocatalytic ATRP and metal coordination for bioresponsive fluorescence imaging. Angew. Chem., Int. Ed. 2020, 59, 11748–11753.

[20]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[21]

Kong, L. R.; Wang, J. C.; Ma, F. C.; Sun, M. T.; Quan, J. Graphitic carbon nitride nanostructures: Catalysis. Appl. Mater. Today 2019, 16, 388–424.

[22]

Fan, Q. Q.; Su, J. N.; Sun, T.; Bi, Z. H.; Wang, H. S.; Zhang, S. S.; Liu, Q. J.; Zhang, L. Z.; Hu, G. Z. Advances of the functionalized carbon nitrides for electrocatalysis. Carbon Energy 2022, 4, 211–236.

[23]

Dong, Q.; Mohamad Latiff, N.; Mazánek, V.; Rosli, N. F.; Chia, H. L.; Sofer, Z.; Pumera, M. Triazine- and Heptazine-based carbon nitrides: Toxicity. ACS Appl. Nano Mater. 2018, 1, 4442–4449.

[24]

Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. 2019, 131, 6225–6236.

[25]

Zhang, D. L.; He, W.; Ye, J. M.; Gao, X.; Wang, D. B.; Song, J. B. Polymeric carbon nitride-derived photocatalysts for water splitting and nitrogen fixation. Small 2021, 17, 2005149.

[26]

Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149, 693–721.

[27]

Liu, L.; Liu, J. W.; Duan, L. Y.; Luo, F. Y.; Wang, Y. M.; Yu, R. Q.; Jiang, J. H. Graphitic carbon nitride nanosheets-based turn-on fluorescent biosensor for highly sensitive, label-free detection of adenylate kinase activity. Sens. Actuat. B Chem. 2018, 267, 231–236.

[28]

Zheng, D. W.; Li, B.; Li, C. X.; Fan, J. X.; Lei, Q.; Li, C.; Xu, Z. S.; Zhang, X. Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 2016, 10, 8715–8722.

[29]

Ji, J. J.; Wen, J.; Shen, Y. F.; Lv, Y. Q.; Chen, Y. L.; Liu, S. Q.; Ma, H. B.; Zhang, Y. J. Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing. J. Am. Chem. Soc. 2017, 139, 11698–11701.

[30]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.

[31]

Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

[32]

Fan, Y. F.; Gan, X. R.; Zhao, H. M.; Zeng, Z. X.; You, W. J.; Quan, X. Multiple application of SAzyme based on carbon nitride nanorod-supported Pt single-atom for H2O2 detection, antibiotic detection and antibacterial therapy. Chem. Eng. J. 2022, 427, 131572.

[33]

Wang, X. Y.; Qin, L.; Lin, M. J.; Xing, H.; Wei, H. Fluorescent graphitic carbon nitride-based nanozymes with peroxidase-like activities for ratiometric biosensing. Anal. Chem. 2019, 91, 10648–10656.

[34]

Wang, L. W.; Li, B.; You, Z.; Wang, A. Z.; Chen, X. Y.; Song, G. J.; Yang, L.; Chen, D.; Yu, X.; Liu, J. et al. Heterojunction of vertically arrayed MoS2 nanosheet/N-doped reduced graphene oxide enabling a nanozyme for sensitive biomolecule monitoring. Anal. Chem. 2021, 93, 11123–11132.

[35]

Wang, L. W.; Gao, F. E.; Wang, A. Z.; Chen, X. Y.; Li, H.; Zhang, X.; Zheng, H.; Ji, R.; Li, B.; Yu, X. et al. Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Adv. Mater. 2020, 32, 2005423.

[36]

Zhang, X.; Zhao, R. B.; Zhang, N.; Su, Y. G.; Liu, Z. L.; Gao, R.; Du, C. F. Insight to unprecedented catalytic activity of double-nitrogen defective metal-free catalyst: Key role of coal gangue. Appl. Catal. B Environ. 2020, 263, 118316.

[37]

Xie, Y.; Li, Y. X.; Huang, Z. H.; Zhang, J. Y.; Jia, X. F.; Wang, X. S.; Ye, J. H. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven H2O2 evolution. Appl. Catal. B Environ. 2020, 265, 118581.

[38]

Liu, M. J.; Zhang, D. P.; Han, J. L.; Liu, C. B.; Ding, Y. C.; Wang, Z. G.; Wang, A. J. Adsorption enhanced photocatalytic degradation sulfadiazine antibiotic using porous carbon nitride nanosheets with carbon vacancies. Chem. Eng. J. 2020, 382, 123017.

[39]

Dai, X. H.; Han, Z. W.; Waterhouse, G. I. N.; Fan, H.; Ai, S. Y. Ordered graphitic carbon nitride tubular bundles with efficient electron–hole separation and enhanced photocatalytic performance for hydrogen generation. Appl. Catal. A Gen. 2018, 566, 200–206.

[40]

Yadav, P.; Nishanthi, S. T.; Purohit, B.; Shanavas, A.; Kailasam, K. Metal-free visible light photocatalytic carbon nitride quantum dots as efficient antibacterial agents: An insight study. Carbon 2019, 152, 587–597.

[41]

Lewalska-Graczyk, A.; Pieta, P.; Garbarino, G.; Busca, G.; Holdynski, M.; Kalisz, G.; Sroka-Bartnicka, A.; Nowakowski, R.; Naushad, M.; Gawande, M. B. et al. Graphitic carbon nitride-nickel catalyst: From material characterization to efficient ethanol electrooxidation. ACS Sustainable Chem. Eng. 2020, 8, 7244–7255.

[42]

Ho, W.; Zhang, Z. Z.; Lin, W.; Huang, S. P.; Zhang, X. W.; Wang, X. X.; Huang, Y. Copolymerization with 2, 4, 6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4. ACS. Appl. Mater. Interfaces 2015, 7, 5497–5505.

[43]

Li, Y. F.; Jin, R. X.; Xing, Y.; Li, J. Q.; Song, S. Y.; Liu, X. C.; Li, M.; Jin, R. C. Macroscopic foam-like holey ultrathin g-C3N4 nanosheets for drastic improvement of visible-light photocatalytic activity. Adv. Energy Mater. 2016, 6, 1601273.

[44]

Bian, J. Y.; An, X. Q.; Jiang, W.; Liu, R. P.; Hu, C. Z.; Liu, H. J. Defect-enhanced activation of carbon nitride/horseradish peroxidase nanohybrids for visible-light-driven photobiocatalytic water purification. Chem. Eng. J. 2021, 408, 127231.

[45]

Gu, Z. Y.; Cui, Z. T.; Wang, Z. J.; Qin, K. S.; Asakura, Y.; Hasegawa, T.; Tsukuda, S.; Hongo, K.; Maezono, R.; Yin, S. Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism. Appl. Catal. B Environ. 2020, 279, 119376.

[46]

Tao, Y.; Ju, E.; Ren, J. G.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

[47]

Lu, W. H.; Zhang, J. X.; Li, N. L.; You, Z.; Feng, Z. Y.; Natarajan, V.; Chen, J.; Zhan, J. H. Co3O4@β-cyclodextrin with synergistic peroxidase-mimicking performance as a signal magnification approach for colorimetric determination of ascorbic acid. Sens. Actuat. B Chem. 2020, 303, 127106.

[48]

Qu, L. L.; Fang, X. J.; Xie, T. H.; Xu, H.; Yang, G. H.; Liu, W. J. Nanozyme-catalyzed cascade reactions for high-sensitive glucose sensing and efficient bacterial killing. Sens. Actuat. B Chem. 2022, 353, 131156.

[49]

Chu, X. H.; Liu, Y. H.; Zhang, P.; Li, K. H.; Feng, W. L.; Sun, B. H.; Zhou, N. L.; Shen, J. Silica-supported near-infrared carbon dots and bicarbonate nanoplatform for triple synergistic sterilization and wound healing promotion therapy. J. Colloid Interface Sci. 2022, 608, 1308–1322.

[50]
Wang, R. Y.; Fan, H. L.; Jiang, W.; Ni, G. S.; Qu, S. J. Amino-functionalized graphene quantum dots prepared using high-softening point asphalt and their application in Fe3+ detection. Appl. Surf. Sci. 2019, 467–468, 446–455.
DOI
[51]

Liu, H. J.; Lv, X. T.; Qian, J. C.; Li, H.; Qian, Y.; Wang, X. Y.; Meng, X. F.; Lin, W. C.; Wang, H. Graphitic carbon nitride quantum dots embedded in carbon nanosheets for near-infrared imaging-guided combined photo-chemotherapy. ACS Nano 2020, 14, 13304–13315.

[52]

Lin, X. G.; Du, H. W.; Jiang, D. C.; Zhang, P.; Yu, Z. W.; Bi, H.; Yuan, Y. P. Microwave awakening the n-π* electronic transition in highly crystalline polymeric carbon nitride nanosheets for photocatalytic hydrogen generation. J. Energy Chem. 2022, 65, 541–547.

[53]

Tan, Z. C.; Zhang, J. R.; Chen, Y. C.; Chou, J. P.; Peng, Y. K. Unravelling the role of structural geometry and chemical state of well-defined oxygen vacancies on pristine CeO2 for H2O2 activation. J. Phys. Chem. Lett. 2020, 11, 5390–5396.

[54]

Huang, Y. M.; Long, J.; Wang, Y. T.; Meng, N. N.; Yu, Y. F.; Lu, S. Y.; Xiao, J. P.; Zhang, B. Engineering nitrogen vacancy in polymeric carbon nitride for nitrate electroreduction to ammonia. ACS Appl. Mater. Interfaces 2021, 13, 54967–54973.

[55]

Zhang, X.; Ong'achwa Machuki, J.; Pan, W. Z.; Cai, W. B.; Xi, Z. Q.; Shen, F. Z.; Zhang, L. J.; Yang, Y.; Gao, F. L.; Guan, M. Carbon nitride hollow theranostic nanoregulators executing laser-activatable water splitting for enhanced ultrasound/fluorescence imaging and cooperative phototherapy. ACS Nano 2020, 14, 4045–4060.

[56]

Wang, M. Q.; Su, Y. T.; Liu, Y. H.; Liang, Y.; Wu, S. S.; Zhou, N. L.; Shen, J. Antibacterial fluorescent nano-sized lanthanum-doped carbon quantum dot embedded polyvinyl alcohol for accelerated wound healing. J. Colloid Interface Sci. 2022, 608, 973–983.

[57]

Zhang, M.; Zheng, T.; Sheng, B. L.; Wu, F.; Zhang, Q. C.; Wang, W. T.; Shen, J.; Zhou, N. L.; Sun, Y. Mn2+ complex-modified polydopamine- and dual emissive carbon dots based nanoparticles for in vitro and in vivo trimodality fluorescent, photothermal, and magnetic resonance imaging. Chem. Eng. J. 2019, 373, 1054–1063.

File
12274_2022_5367_MOESM1_ESM.pdf (4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 October 2022
Revised: 11 November 2022
Accepted: 27 November 2022
Published: 14 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21876099, 22106088, and 22276110), Key Research & Developmental Program of Shandong Province (No. 2021CXGC011202), and Fundamental Research Funds of Shandong University (No. zy202102).

Return