Journal Home > Volume 16 , Issue 5

Covalent organic frameworks (COFs) have emerged as promising electrode materials for rechargeable metal-ion batteries and have gained much attention in recent years due to their high specific surface area, inherent porosity, tunable molecular structure, robust framework, and abundant active sites. Moreover, compared with inorganic materials and small organic molecules, COFs have the advantages of multi-electron transfer, short pathways, and high cycling stability. Although great progress on COF-based electrodes has been made, the corresponding electrochemical performance is still far from satisfactory for practical applications. In this review, we first summarize the fundamental background of COFs, including the species of COFs (different active covalent bonds) and typical synthesis methods of COFs. Then, the key challenges and the latest research progress of COF-based cathodes and anodes for metal-ion batteries are reviewed, including Li-ion batteries, Na-ion batteries, K-ion batteries, Zn-ion batteries, et al. Moreover, the effective strategies to enhance electrochemical performance of COF-based electrodes are presented. Finally, this review also covers the typical superiorities of COFs used in energy devices, as well as providing some perspectives and outlooks in this field. We hope this review can provide fundamental guidance for the development of COF-based electrodes for metal-ion batteries in the further research.


menu
Abstract
Full text
Outline
About this article

Recent progress in COF-based electrode materials for rechargeable metal-ion batteries

Show Author's information Shunhang Wei1,§Jiwei Wang4,§Yuzhao Li5Zebo Fang1( )Lei Wang3( )Yuxi Xu2( )
Zhejiang Engineering Research Center of MEMS, Shaoxing University, Shaoxing 312000, China
School of Engineering, Westlake University, Hangzhou 310024, China
School of Mechatronics Engineering and Automation, Foshan University, Foshan 528225, China
Department of Chemistry, Binghamton University, Binghamton, New York 13902, USA
China Electronics Corporation, Beijing 100086, China

§ Shunhang Wei and Jiwei Wang contributed equally to this work.

Abstract

Covalent organic frameworks (COFs) have emerged as promising electrode materials for rechargeable metal-ion batteries and have gained much attention in recent years due to their high specific surface area, inherent porosity, tunable molecular structure, robust framework, and abundant active sites. Moreover, compared with inorganic materials and small organic molecules, COFs have the advantages of multi-electron transfer, short pathways, and high cycling stability. Although great progress on COF-based electrodes has been made, the corresponding electrochemical performance is still far from satisfactory for practical applications. In this review, we first summarize the fundamental background of COFs, including the species of COFs (different active covalent bonds) and typical synthesis methods of COFs. Then, the key challenges and the latest research progress of COF-based cathodes and anodes for metal-ion batteries are reviewed, including Li-ion batteries, Na-ion batteries, K-ion batteries, Zn-ion batteries, et al. Moreover, the effective strategies to enhance electrochemical performance of COF-based electrodes are presented. Finally, this review also covers the typical superiorities of COFs used in energy devices, as well as providing some perspectives and outlooks in this field. We hope this review can provide fundamental guidance for the development of COF-based electrodes for metal-ion batteries in the further research.

Keywords: electrochemical performance, structure–property relationship, covalent organic frameworks, synthetic methods, metal-ion batteries

References(128)

[1]

Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126.

[2]

Cui, X.; Dong, H. H.; Chen, S. Q.; Wu, M. H.; Wang, Y. Progress and perspective of metal-and covalent-organic frameworks and their derivatives for lithium-ion batteries. Batteries Supercaps 2021, 4, 72–97.

[3]

He, J. Q.; Lu, C. H.; Jiang, H. B.; Han, F.; Shi, X.; Wu, J. X.; Wang, L. Y.; Chen, T. Q.; Wang, J. J.; Zhang, Y. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 2021, 597, 57–63.

[4]

Wang, L.; Liu, S. K.; Hu, J.; Zhang, X. N.; Li, X.; Zhang, G. H.; Li, Y. J.; Zheng, C. M.; Hong, X. B.; Duan, H. G. Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells. Nano Res. 2021, 14, 1355–1363.

[5]

Angeloudis, A.; Kramer, S. C.; Hawkins, N.; Piggott, M. D. On the potential of linked-basin tidal power plants: An operational and coastal modelling assessment. Renew. Energy 2020, 155, 876–888.

[6]

Javed, M. S.; Ma, T.; Jurasz, J.; Amin, M. Y. Solar and wind power generation systems with pumped hydro storage: Review and future perspectives. Renew. Energy 2020, 148, 176–192.

[7]

Wei, S. H.; Chang, S. F.; Qian, J.; Xu, X. X. Selective cocatalyst deposition on ZnTiO3−xNy hollow nanospheres with efficient charge separation for solar-driven overall water splitting. Small 2021, 17, 2100084.

[8]

Li, K.; Liang, M. Y.; Wang, H.; Wang, X. H.; Huang, Y. S.; Coelho, J.; Pinilla, S.; Zhang, Y. L.; Qi, F. W.; Nicolosi, V. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 2020, 30, 2000842.

[9]

Xiao, P. T.; Li, S.; Yu, C. B.; Wang, Y.; Xu, Y. X. Interface engineering between the metal-organic framework nanocrystal and graphene toward ultrahigh potassium-ion storage performance. ACS Nano 2020, 14, 10210–10218.

[10]

Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.

[11]

Li, H. L.; Lv, T.; Sun, H. H.; Qian, G. J.; Li, N.; Yao, Y.; Chen, T. Ultrastretchable and superior healable supercapacitors based on a double cross-linked hydrogel electrolyte. Nat. Commun. 2019, 10, 536.

[12]

Wang, K. X.; Hui, K. N.; Hui, K. S.; Peng, S. J.; Xu, Y. X. Recent progress in metal-organic framework/graphene-derived materials for energy storage and conversion: Design, preparation, and application. Chem. Sci. 2021, 12, 5737–5766.

[13]

Sun, T.; Liang, Y.; Xu, Y. X. Rapid, ordered polymerization of crystalline semiconducting covalent triazine frameworks. Angew. Chem., Int. Ed. 2022, 61, e202113926.

[14]

Sun, T.; Li, Z. J.; Yang, X.; Wang, S.; Zhu, Y. H.; Zhang, X. B. Imine-rich poly(o-phenylenediamine) as high-capacity trifunctional organic electrode for alkali-ion batteries. CCS Chem. 2019, 1, 365–372.

[15]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[16]

Wei, C. L.; Tan, L. W.; Zhang, Y. C.; Zhang, K.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Covalent organic frameworks and their derivatives for better metal anodes in rechargeable batteries. ACS Nano 2021, 15, 12741–12767.

[17]

Piątek, J.; Afyon, S.; Budnyak, T. M.; Budnyk, S.; Sipponen, M. H.; Slabon, A. Sustainable Li-ion batteries: Chemistry and recycling. Adv. Energy Mater. 2021, 11, 2003456.

[18]

Liu, B. Q.; Zhang, Q.; Li, Y. Q.; Hao, Y. H.; Ali, U.; Li, L.; Zhang, L. Y.; Wang, C. G.; Su, Z. M. Realizing complete solid–solution reaction to achieve temperature independent LiFePO4 for high rate and low temperature Li-ion batteries. CCS Chem. 2023, 5, 209–220.

[19]

Wang, L.; Nie, Y.; Zhang, X. N.; Zhang, G. H.; Lu, Q. H.; Duan, H. G. Pomegranate-inspired Zn2Ti3O8/TiO2@C nanospheres with pseudocapacitive effect for ultra-stable lithium-ion batteries. Chem. Eng. J. 2021, 418, 129227.

[20]

Jin, T.; Li, H. X.; Zhu, K. J.; Wang, P. F.; Liu, P.; Jiao, L. F. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342–2377.

[21]

Rajagopalan, R.; Tang, Y.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

[22]

Tang, B. Y.; Shan, L. T.; Liang, S. Q.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304.

[23]

Fang, Y. J.; Zhang, J. X.; Zhong, F. P.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Amorphous NaVOPO4 as a high-rate and ultrastable cathode material for sodium-ion batteries. CCS Chem. 2021, 3, 2428–2436.

[24]
Niu, Y. B.; Yin, Y. X.; Wang, W. P.; Wang, P. F.; Ling, W.; Xiao, Y.; Guo, Y. G. In situ copolymerizated gel polymer electrolyte with cross-linked network for sodium-ion batteries. CCS Chem. 2020, 2, 589–597.
[25]

Xie, J. P.; Li, J. L.; Li, X. D.; Lei, H.; Zhuo, W. C.; Li, X. B.; Hong, G.; Hui, K. N.; Pan, L. K.; Mai, W. J. Ultrahigh “relative energy density” and mass loading of carbon cloth anodes for K-ion batteries. CCS Chem. 2021, 3, 791–799.

[26]

Yi, Z.; Fang, D. L.; Zhang, W. Q.; Tian, J.; Chen, S. M.; Liang, J. B.; Lin, N.; Qian, Y. T. Revealing quasi-1D volume expansion in Na-/K-ion battery anodes: A case study of Sb2O3 microbelts. CCS Chem. 2021, 3, 1306–1315.

[27]

Lee, S.; Hong, J.; Kang, K. Redox-active organic compounds for future sustainable energy storage system. Adv. Energy Mater. 2020, 10, 2001445.

[28]

Xu, J. S.; He, Y. F.; Bi, S.; Wang, M.; Yang, P.; Wu, D. Q.; Wang, J. J.; Zhang, F. An olefin-linked covalent organic framework as a flexible thin-film electrode for a high-performance micro-supercapacitor. Angew. Chem., Int. Ed. 2019, 131, 12193–12197.

[29]

Gao, H.; Zhu, Q.; Neale, A. R.; Bahri, M.; Wang, X.; Yang, H. F.; Liu, L. J.; Clowes, R.; Browning, N. D.; Sprick, R. S. et al. Integrated covalent organic framework/carbon nanotube composite as Li-ion positive electrode with ultra-high rate performance. Adv. Energy Mater. 2021, 11, 2101880.

[30]

Xu, J. Y.; Xu, Y. F.; Lai, C. L.; Xia, T. T.; Zhang, B. N.; Zhou, X. S. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries. Sci. China Chem. 2021, 64, 1267–1282.

[31]

Chen, X. D.; Sun, W. W.; Wang, Y. Covalent organic frameworks for next-generation batteries. ChemElectroChem 2020, 7, 3905–3926.

[32]

Li, J.; Jing, X. C.; Li, Q. Q.; Li, S. W.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 2020, 49, 3565–3604.

[33]

Niu, C. Q.; Xu, Y. X. Two-dimensional polymers: Preparation, assembly and high-efficiency electrochemical applications. Acta Polym. Sin. 2021, 52, 549–564.

[34]

Niu, C. Q.; Luo, W. J.; Dai, C. M.; Yu, C. B.; Xu, Y. X. High-voltage-tolerant covalent organic framework electrolyte with holistically oriented channels for solid-state lithium metal batteries with nickel-rich cathodes. Angew. Chem., Int. Ed. 2021, 60, 24915–24923.

[35]

Gong, L.; Yang, X. Y.; Gao, Y.; Yang, G. X.; Yu, Z. H.; Fu, X. Z.; Wang, Y. H.; Qi, D. D.; Bian, Y. Z.; Wang, K. et al. Two-dimensional covalent organic frameworks with p-and bipolar-type redox-active centers for organic high-performance Li-ion battery cathodes. J. Mater. Chem. A 2022, 10, 16595–16601.

[36]

Tong, Z. Q.; Wang, H.; Kang, T. X.; Wu, Y.; Guan, Z. Q.; Zhang, F.; Tang, Y. B.; Lee, C. S. Ionic covalent organic frameworks with tailored anionic redox chemistry and selective ion transport for high-performance Na-ion cathodes. J. Energy Chem. 2022, 75, 441–447.

[37]

Li, T.; Yan, X. D.; Liu, Y.; Zhang, W. D.; Fu, Q. T.; Zhu, H. Y.; Li, Z. J.; Gu, Z. G. A 2D covalent organic framework involving strong intramolecular hydrogen bonds for advanced supercapacitors. Polym. Chem. 2020, 11, 47–52.

[38]

Tong, Y. F.; Wang, X. H.; Zhang, Y.; Huang, W. W. Recent advances of covalent organic frameworks in lithium ion batteries. Inorg. Chem. Front. 2021, 8, 558–571.

[39]

An, N.; Guo, Z.; Xin, J.; He, Y. Y.; Xie, K. F.; Sun, D. M.; Dong, X. Y.; Hu, Z. A. Hierarchical porous covalent organic framework/graphene aerogel electrode for high-performance supercapacitors. J. Mater. Chem. A 2021, 9, 16824–16833.

[40]

He, Y. Y.; An, N.; Meng, C. C.; Xie, K. F.; Wang, X. T.; Dong, X. Y.; Sun, D. M.; Yang, Y. Y.; Hu, Z. A. High-density active site COFs with a flower-like morphology for energy storage applications. J. Mater. Chem. A 2022, 10, 11030–11038.

[41]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[42]

El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O'Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.

[43]

Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y. et al. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

[44]

Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. L. A photoconductive covalent organic framework: Self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem., Int. Ed. 2009, 48, 5439–5442.

[45]

Spitler, E. L.; Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat. Chem. 2010, 2, 672–677.

[46]

Dalapati, S.; Jin, E. Q.; Addicoat, M.; Heine, T.; Jiang, D. L. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800.

[47]

Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Edit. 2008, 47, 3450–3453.

[48]

Liu, J. J.; Zan, W.; Li, K.; Yang, Y.; Bu, F. X.; Xu, Y. X. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J. Am. Chem. Soc. 2017, 139, 11666–11669.

[49]

Liu, M. Y.; Huang, Q.; Wang, S. L.; Li, Z. Y.; Li, B. Y.; Jin, S. B.; Tan, B. E. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angew. Chem., Int. Ed. 2018, 57, 11968–11972.

[50]

Uribe-Romo, F. J.; Hunt, J. R.; Furukawa, H.; Klock, C.; O’Keeffe, M.; Yaghi, O. M. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 2009, 131, 4570–4571.

[51]

Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

[52]

Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S. K.; Liao, L.; Ambrogio, M. W.; Botros, Y. Y.; Duan, X. F. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 2011, 23, 4094–4097.

[53]

Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481.

[54]

Bunck, D. N.; Dichtel, W. R. Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 14952–14955.

[55]

Qian, C.; Zhou, W. Q.; Qiao, J. S.; Wang, D. D.; Li, X.; Teo, W. L.; Shi, X. Y.; Wu, H. W.; Di, J.; Wang, H. et al. Linkage engineering by harnessing supramolecular interactions to fabricate 2D hydrazone-linked covalent organic framework platforms toward advanced catalysis. J. Am. Chem. Soc. 2020, 142, 18138–18149.

[56]

Dalapati, S.; Jin, S. B.; Gao, J.; Xu, Y. H.; Nagai, A.; Jiang, D. L. An azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135, 17310–17313.

[57]

Zhu, Y. L.; Wan, S.; Jin, Y. H.; Zhang, W. Desymmetrized vertex design for the synthesis of covalent organic frameworks with periodically heterogeneous pore structures. J. Am. Chem. Soc. 2015, 137, 13772–13775.

[58]

Alahakoon, S. B.; Thompson, C. M.; Nguyen, A. X.; Occhialini, G.; McCandless, G. T.; Smaldone, R. A. An azine-linked hexaphenylbenzene based covalent organic framework. Chem. Commun. 2016, 52, 2843–2845.

[59]

Li, Z. P.; Zhi, Y. F.; Feng, X.; Ding, X. S.; Zou, Y. C.; Liu, X. M.; Mu, Y. An azine-linked covalent organic framework: Synthesis, characterization and efficient gas storage. Chem. -Eur. J. 2015, 21, 12079–12084.

[60]

Haase, F.; Banerjee, T.; Savasci, G.; Ochsenfeld, C.; Lotsch, B. V. Structure–property–activity relationships in a pyridine containing azine-linked covalent organic framework for photocatalytic hydrogen evolution. Faraday Discuss. 2017, 201, 247–264.

[61]

Kim, G.; Yang, J.; Nakashima, N.; Shiraki, T. Highly microporous nitrogen-doped carbon synthesized from azine-linked covalent organic framework and its supercapacitor function. Chem. -Eur. J. 2017, 23, 17504–17510.

[62]

Jin, S. B.; Furukawa, K.; Addicoat, M.; Chen, L.; Takahashi, S.; Irle, S.; Nakamura, T.; Jiang, D. L. Large pore donor–acceptor covalent organic frameworks. Chem. Sci. 2013, 4, 4505–4511.

[63]

Huang, N.; Wang, P.; Jiang, D. Covalent organic frameworks: A materials platform for structural and functional designs. Nat. Rev. Mater. 2016, 1.

[64]

Royuela, S.; Martínez-Periñán, E.; Arrieta, M. P.; Martínez, J. I.; Ramos, M. M.; Zamora, F.; Lorenzo, E.; Segura, J. L. Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. Chem. Commun. 2020, 56, 1267–1270.

[65]

Veldhuizen, H.; Van Der Zwaag, S.; Van Der Veen, M. A. Impact of flow-induced disturbances during synthesis on the photophysical properties of naphthalene diimide covalent organic frameworks. Micropor. Mesopor. Mater. 2022, 343, 112122.

[66]

Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

[67]

DeBlase, C. R.; Silberstein, K. E.; Truong, T. T.; Abruña, H. D.; Dichtel, W. R. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821–16824.

[68]

Rao, M. R.; Fang, Y.; De Feyter, S.; Perepichka, D. F. Conjugated covalent organic frameworks via michael addition-elimination. J. Am. Chem. Soc. 2017, 139, 2421–2427.

[69]
Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. H. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676.
[70]

Jin, E. Q.; Li, J.; Geng, K. Y.; Jiang, Q. H.; Xu, H.; Xu, Q.; Jiang, D. L. Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nat. Commun. 2018, 9, 4143.

[71]

Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 6430–6434.

[72]

Salehi, M.; Parvarinezhad, S.; Khademinia, S. Solid state synthesis of MgAl2O4 nanomaterials and solar light-induced photocatalytic removal of Malachite green. Int. J. Nano Dimens. 2019, 10, 89–104.

[73]

Zhou, D.; Tan, X. Y.; Wu, H. M.; Tian, L. H.; Li, M. Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films by suzuki polymerization on a liquid–liquid interface. Angew. Chem., Int. Ed. 2019, 131, 1390–1395.

[74]

Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid–vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470–10474.

[75]

Campbell, N. L.; Clowes, R.; Ritchie, L. K.; Cooper, A. I. Rapid microwave synthesis and purification of porous covalent organic frameworks. Chem. Mater. 2009, 21, 204–206.

[76]

Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 2012, 24, 2357–2361.

[77]

Ding, Y. S.; Wang, Y.; Su, Y. J.; Yang, Z.; Liu, J. Q.; Hua, X. L.; Wei, H. A novel channel-wall engineering strategy for two-dimensional cationic covalent organic frameworks: Microwave-assisted anion exchange and enhanced carbon dioxide capture. Chin. Chem. Lett. 2020, 31, 193–196.

[78]

Maschita, J.; Banerjee, T.; Savasci, G.; Haase, F.; Ochsenfeld, C.; Lotsch, B. V. Ionothermal synthesis of imide-linked covalent organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 15750–15758.

[79]

Yang, S. T.; Kim, J.; Cho, H. Y.; Kim, S.; Ahn, W. S. Facile synthesis of covalent organic frameworks COF-1 and COF-5 by sonochemical method. RSC Adv. 2012, 2, 10179–10181.

[80]

Kim, S.; Park, C.; Lee, M.; Song, I.; Kim, J.; Lee, M.; Jung, J.; Kim, Y.; Lim, H.; Choi, H. C. Rapid photochemical synthesis of sea-urchin-shaped hierarchical porous COF-5 and its lithography-free patterned growth. Adv. Funct. Mater. 2017, 27, 1700925.

[81]

Zhang, M. X.; Chen, J. C.; Zhang, S. T.; Zhou, X. Q.; He, L. W.; Sheridan, M. V.; Yuan, M. J.; Zhang, M. J.; Chen, L.; Dai, X. et al. Electron beam irradiation as a general approach for the rapid synthesis of covalent organic frameworks under ambient conditions. J. Am. Chem. Soc. 2020, 142, 9169–9174.

[82]

Ding, S. Y.; Cui, X. H.; Feng, J.; Lu, G. X.; Wang, W. Facile synthesis of –C=N– linked covalent organic frameworks under ambient conditions. Chem. Commun. 2017, 53, 11956–11959.

[83]

Xu, C.; Reeves, P. J.; Jacquet, Q.; Grey, C. P. Phase behavior during electrochemical cycling of Ni-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 2021, 11, 2003404.

[84]

Zhai, L. P.; Li, G. J.; Yang, X. B.; Park, S.; Han, D. D.; Mi, L. W.; Wang, Y. J.; Li, Z. P.; Lee, S. Y. 30 Li+-accommodating covalent organic frameworks as ultralong cyclable high-capacity Li-ion battery electrodes. Adv. Funct. Mater. 2022, 32, 2108798.

[85]

Wen, Y. C.; Wang, X. S.; Yang, Y.; Liu, M. Z.; Tu, W. Q.; Xu, M. Q.; Sun, G. Z.; Kawaguchi, S.; Cao, G. Z.; Li, W. S. Covalent organic framework-regulated ionic transportation for high-performance lithium-ion batteries. J. Mater. Chem. A 2019, 7, 26540–26548.

[86]

Huang, W. H.; Li, X. M.; Yang, X. F.; Zhang, X. X.; Wang, H. H.; Wang, H. The recent progress and perspectives on metal- and covalent-organic framework based solid-state electrolytes for lithium-ion batteries. Mater. Chem. Front. 2021, 5, 3593–3613.

[87]

Hu, Y. M.; Wayment, L. J.; Haslam, C.; Yang, X. Y.; Lee, S. H.; Jin, Y. H.; Zhang, W. Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. EnergyChem 2021, 3, 100048.

[88]

Xu, F.; Jin, S. B.; Zhong, H.; Wu, D. C.; Yang, X. Q.; Chen, X.; Wei, H.; Fu, R. W.; Jiang, D. L. Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage. Sci. Rep. 2015, 5, 8225.

[89]

Luo, Z. Q.; Liu, L. J.; Ning, J. X.; Lei, K. X.; Lu, Y.; Li, F. J.; Chen, J. A microporous covalent-organic framework with abundant accessible carbonyl groups for lithium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 9443–9446.

[90]

Wang, Z. L.; Li, Y. J.; Liu, P. J.; Qi, Q. Y.; Zhang, F.; Lu, G. L.; Zhao, X.; Huang, X. Y. Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. Nanoscale 2019, 11, 5330–5335.

[91]

Wu, M. M.; Zhao, Y.; Zhao, R. Q.; Zhu, J.; Liu, J.; Zhang, Y. M.; Li, C. X.; Ma, Y. F.; Zhang, H. T.; Chen, Y. S. Chemical design for both molecular and morphology optimization toward high-performance lithium-ion batteries cathode material based on covalent organic framework. Adv. Funct. Mater. 2022, 32, 2107703.

[92]

Jhulki, S.; Feriante, C. H.; Mysyk, R.; Evans, A. M.; Magasinski, A.; Raman, A. S.; Turcheniuk, K.; Barlow, S.; Dichtel, W. R.; Yushin, G. et al. A naphthalene diimide covalent organic framework: Comparison of cathode performance in lithium-ion batteries with amorphous cross-linked and linear analogues, and its use in aqueous lithium-ion batteries. ACS Appl. Energy Mater. 2021, 4, 350–356.

[93]

Shehab, M. K.; Weeraratne, K. S.; Huang, T.; Lao, K. U.; El-Kaderi, H. M. Exceptional sodium-ion storage by an aza-covalent organic framework for high energy and power density sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 15083–15091.

[94]

Sakaushi, K.; Hosono, E.; Nickerl, G.; Gemming, T.; Zhou, H. S.; Kaskel, S.; Eckert, J. Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device. Nat. Commun. 2013, 4, 1485.

[95]

Shi, R. J.; Liu, L. J.; Lu, Y.; Wang, C. C.; Li, Y. X.; Li, L.; Yan, Z. H.; Chen, J. Nitrogen-rich covalent organic frameworks with multiple carbonyls for high-performance sodium batteries. Nat. Commun. 2020, 11, 178.

[96]

Duan, J.; Wang, W. T.; Zou, D. G.; Liu, J.; Li, N.; Weng, J. Y.; Xu, L. P.; Guan, Y.; Zhang, Y. J.; Zhou, P. F. Construction of a few-layered COF@CNT composite as an ultrahigh rate cathode for low-cost K-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 31234–31244.

[97]

Li, S. W.; Liu, Y. Z.; Dai, L.; Li, S.; Wang, B.; Xie, J.; Li, P. F. A stable covalent organic framework cathode enables ultra-long cycle life for alkali and multivalent metal rechargeable batteries. Energy Storage Mater. 2022, 48, 439–446.

[98]

Qin, K. Q.; Huang, J. H.; Holguin, K.; Luo, C. Recent advances in developing organic electrode materials for multivalent rechargeable batteries. Energy Environ. Sci. 2020, 13, 3950–3992.

[99]

Huang, A. X.; Zhou, W. J.; Wang, A. R.; Chen, M. F.; Tian, Q. H.; Chen, J. Z. Molten salt synthesis of α-MnO2/Mn2O3 nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 475–481.

[100]

Khayum, A.; Ghosh, M.; Vijayakumar, V.; Halder, A.; Nurhuda, M.; Kumar, S.; Addicoat, M.; Kurungot, S.; Banerjee, R. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem. Sci. 2019, 10, 8889–8894.

[101]

Ma, D. X.; Zhao, H. M.; Cao, F.; Zhao, H. H.; Li, J. X.; Wang, L.; Liu, K. A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chem. Sci. 2022, 13, 2385–2390.

[102]

Wang, W. X.; Kale, V. S.; Cao, Z.; Lei, Y. J.; Kandambeth, S.; Zou, G. D.; Zhu, Y. P.; Abouhamad, E.; Shekhah, O.; Cavallo, L. et al. Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 2021, 33, 2103617.

[103]

Zheng, S. B.; Shi, D. J.; Yan, D.; Wang, Q. R.; Sun, T. J.; Ma, T.; Li, L.; He, D.; Tao, Z. L.; Chen, J. Orthoquinone-based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc-organic batteries. Angew. Chem., Int. Ed. 2022, 61, e202117511.

[104]

Sun, R. M.; Hou, S.; Luo, C.; Ji, X.; Wang, L. N.; Mai, L. Q.; Wang, C. S. A covalent organic framework for fast-charge and durable rechargeable Mg storage. Nano Lett. 2020, 20, 3880–3888.

[105]

Lu, H. Y.; Ning, F. Y.; Jin, R.; Teng, C.; Wang, Y.; Xi, K.; Zhou, D. S.; Xue, G. Two-dimensional covalent organic frameworks with enhanced aluminum storage properties. ChemSusChem 2020, 13, 3447–3454.

[106]

Bai, L. Y.; Gao, Q.; Zhao, Y. L. Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries. J. Mater. Chem. A 2016, 4, 14106–14110.

[107]

Zhao, H. Z.; Chen, H.; Xu, C. Y.; Li, Z. H.; Ding, B.; Dou, H.; Zhang, X. G. Charge storage mechanism of an anthraquinone-derived porous covalent organic framework with multiredox sites as anode material for lithium-ion battery. ACS Appl. Energy Mater. 2021, 4, 11377–11385.

[108]

Zhao, G. F.; Zhang, Y. H.; Gao, Z. H.; Li, H. N.; Liu, S. M.; Cai, S.; Yang, X. F.; Guo, H.; Sun, X. L. Dual active site of the azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett. 2020, 5, 1022–1031.

[109]
Tong, Y. F.; Sun, Z. P.; Wang, J. W.; Huang, W. W.; Zhang, Q. C. Covalent organic framework containing dual redox centers as an efficient anode in Li-ion batteries. SmartMat, in press, https://doi.org/10.1002/smm2.1115.
DOI
[110]

Zhao, H. Z.; Luo, D. R.; Xu, H.; He, W. J.; Ding, B.; Dou, H.; Zhang, X. G. A novel covalent organic framework with high-density imine groups for lithium storage as anode material in lithium-ion batteries. J. Mater. Sci. 2022, 57, 9980–9991.

[111]

Haldar, S.; Roy, K.; Nandi, S.; Chakraborty, D.; Puthusseri, D.; Gawli, Y.; Ogale, S.; Vaidhyanathan, R. High and reversible lithium ion storage in self-exfoliated triazole-triformyl phloroglucinol-based covalent organic nanosheets. Adv. Energy Mater. 2018, 8, 1702170.

[112]

Wu, M. M.; Zhao, Y.; Zhang, H. T.; Zhu, J.; Ma, Y. F.; Li, C. X.; Zhang, Y. M.; Chen, Y. S. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 2022, 15, 9779–9784.

[113]

Yang, X. B.; Lin, C.; Han, D. D.; Li, G. J.; Huang, C.; Liu, J.; Wu, X. L.; Zhai, L. P.; Mi, L. W. In situ construction of redox-active covalent organic frameworks/carbon nanotube composites as anodes for lithium-ion batteries. J. Mater. Chem. A 2022, 10, 3989–3995.

[114]

Zhang, Y. C.; Wu, Y.; An, Y. L.; Wei, C. L.; Tan, L. W.; Xi, B. J.; Xiong, S. L.; Feng, J. K. Ultrastable and high-rate 2D siloxene anode enabled by covalent organic framework engineering for advanced lithium-ion batteries. Small Methods 2022, 6, 2200306.

[115]

Patra, B. C.; Das, S. K.; Ghosh, A.; K, A. R.; Moitra, P.; Addicoat, M.; Mitra, S.; Bhaumik, A.; Bhattacharya, S.; Pradhan, A. Covalent organic framework based microspheres as an anode material for rechargeable sodium batteries. J. Mater. Chem. A 2018, 6, 16655–16663.

[116]

Haldar, S.; Kaleeswaran, D.; Rase, D.; Roy, K.; Ogale, S.; Vaidhyanathan, R. Tuning the electronic energy level of covalent organic frameworks for crafting high-rate Na-ion battery anode. Nanoscale Horiz. 2020, 5, 1264–1273.

[117]

Van Der Jagt, R.; Vasileiadis, A.; Veldhuizen, H.; Shao, P. P.; Feng, X.; Ganapathy, S.; Habisreutinger, N. C.; Van Der Veen, M. A.; Wang, C.; Wagemaker, M. et al. Synthesis and structure–property relationships of polyimide covalent organic frameworks for carbon dioxide capture and (aqueous) sodium-ion batteries. Chem. Mater. 2021, 33, 818–833.

[118]

Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. Triazine functionalized porous covalent organic framework for photo-organocatalytic EZ isomerization of olefins. J. Am. Chem. Soc. 2019, 141, 6152–6156.

[119]

Ball, B.; Sarkar, P. Triazine- and keto-functionalized porous covalent organic framework as a promising anode material for Na-ion batteries: A first-principles study. J. Phys. Chem. C 2020, 124, 15870–15878.

[120]

Vedachalam, S.; Sekar, P.; Nithya, C.; Murugesh, N.; Karvembu, R. Dopant-free main group elements supported covalent organic-inorganic hybrid conducting polymer for sodium-ion battery application. ACS Appl. Energy Mater. 2022, 5, 557–566.

[121]

Li, S. Y.; Li, W. H.; Wu, X. L.; Tian, Y. Y.; Yue, J. Y.; Zhu, G. S. Pore-size dominated electrochemical properties of covalent triazine frameworks as anode materials for K-ion batteries. Chem. Sci. 2019, 10, 7695–7701.

[122]

Wolfson, E. R.; Schkeryantz, L.; Moscarello, E. M.; Fernandez, J. P.; Paszek, J.; Wu, Y. Y.; Hadad, C. M.; McGrier, P. L. Alkynyl-based covalent organic frameworks as high-performance anode materials for potassium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 41628–41636.

[123]

Luo, X. X.; Li, W. H.; Liang, H. J.; Zhang, H. X.; Du, K. D.; Wang, X. T.; Liu, X. F.; Zhang, J. P.; Wu, X. L. Covalent organic framework with highly accessible carbonyls and π-cation effect for advanced potassium-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202117661.

[124]

Xu, Q.; Li, Q.; Guo, Y.; Luo, D.; Qian, J.; Li, X. P.; Wang, Y. Multiscale hierarchically engineered carbon nanosheets derived from covalent organic framework for potassium-ion batteries. Small Methods 2020, 4, 2000159.

[125]

Das, P.; Ball, B.; Sarkar, P. Theoretical investigation of a tetrazine based covalent organic framework as a promising anode material for sodium/calcium ion batteries. Phys. Chem. Chem. Phys. 2022, 24, 21729–21739.

[126]

Li, L. Y.; Zhang, G. B.; Deng, X. M.; Hao, J.; Zhao, X.; Li, H. F.; Han, C. P.; Li, B. H. A covalent organic framework for high-rate aqueous calcium-ion batteries. J. Mater. Chem. A 2022, 10, 20827–20836.

[127]

Abuzeid, H. R.; EL-Mahdy, A. F. M.; Kuo, S. W. Covalent organic frameworks: Design principles, synthetic strategies, and diverse applications. Giant 2021, 6, 100054.

[128]

Sharma, R. K.; Yadav, P.; Yadav, M.; Gupta, R.; Rana, P.; Srivastava, A.; Zbořil, R.; Varma, R. S.; Antonietti, M.; Gawande, M. B. Recent development of covalent organic frameworks (COFs): Synthesis and catalytic (organic-electro-photo) applications. Mater. Horiz. 2020, 7, 411–454.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 October 2022
Revised: 07 November 2022
Accepted: 27 November 2022
Published: 19 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51872186), Project funded by China Postdoctoral Science Foundation (No. 2021M702316), and Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110999).

Return