Journal Home > Volume 16 , Issue 6

We investigated herein the morphological, structural, and electrochemical features of electrodes using a sulfur (S)-super P carbon (SPC) composite (i.e., S@SPC-73), and including few-layer graphene (FLG), multiwalled carbon nanotubes (MWCNTs), or a mixture of them within the current collector design. Furthermore, we studied the effect of two different electron-conducting agents, that is, SPC and FLG, used in the slurry for the electrode preparation. The supports have high structural crystallinity, while their morphologies are dependent on the type of material used. Cyclic voltammetry (CV) shows a reversible and stable conversion reaction between Li and S with an activation process upon the first cycle leading to the decrease of cell polarization. This activation process is verified by electrochemical impedance spectroscopy (EIS) with a decrease of the resistance after the first CV scan. Furthermore, CV at increasing scan rates indicates a Li+ diffusion coefficient (D) ranging between 10−9 and 10−7 cm2·s−1 in the various states of charge of the cell, and the highest D value for the electrodes using FLG as electron-conducting agent. Galvanostatic tests performed at constant current of C/5 (1 C = 1675 mA·gS−1) show high initial specific capacity values, which decrease during the initial cycles due to a partial loss of the active material, and subsequently increase due to the activation process. All the electrodes show a Coulombic efficiency higher than 97% upon the initial cycles, and a retention strongly dependent on the electrode formulation. Therefore, this study suggests a careful control of the electrode in terms of current collector design and slurry composition to achieve good electrode morphology, mechanical stability, and promising electrochemical performance in practical Li-S cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Current collectors based on multiwalled carbon-nanotubes and few-layer graphene for enhancing the conversion process in scalable lithium-sulfur battery

Show Author's information Vittorio Marangon1,2Edoardo Barcaro2Luca Minnetti1Wolfgang Brehm3Francesco Bonaccorso1,3Vittorio Pellegrini1,3Jusef Hassoun1,2,4( )
Graphene Labs, Istituto Italiano di Tecnologia, Genoa 16163, Italy
Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara 44121, Italy
BeDimensional S.p.A., Genoa 16163, Italy
National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Ferrara Research Unit, Ferrara 44121, Italy

Abstract

We investigated herein the morphological, structural, and electrochemical features of electrodes using a sulfur (S)-super P carbon (SPC) composite (i.e., S@SPC-73), and including few-layer graphene (FLG), multiwalled carbon nanotubes (MWCNTs), or a mixture of them within the current collector design. Furthermore, we studied the effect of two different electron-conducting agents, that is, SPC and FLG, used in the slurry for the electrode preparation. The supports have high structural crystallinity, while their morphologies are dependent on the type of material used. Cyclic voltammetry (CV) shows a reversible and stable conversion reaction between Li and S with an activation process upon the first cycle leading to the decrease of cell polarization. This activation process is verified by electrochemical impedance spectroscopy (EIS) with a decrease of the resistance after the first CV scan. Furthermore, CV at increasing scan rates indicates a Li+ diffusion coefficient (D) ranging between 10−9 and 10−7 cm2·s−1 in the various states of charge of the cell, and the highest D value for the electrodes using FLG as electron-conducting agent. Galvanostatic tests performed at constant current of C/5 (1 C = 1675 mA·gS−1) show high initial specific capacity values, which decrease during the initial cycles due to a partial loss of the active material, and subsequently increase due to the activation process. All the electrodes show a Coulombic efficiency higher than 97% upon the initial cycles, and a retention strongly dependent on the electrode formulation. Therefore, this study suggests a careful control of the electrode in terms of current collector design and slurry composition to achieve good electrode morphology, mechanical stability, and promising electrochemical performance in practical Li-S cells.

Keywords: carbon nanotubes, scalability, lithium-sulfur battery, few-layer graphene, current collector, sulfur loading

References(73)

[1]

Chung, S. H.; Chang, C. H.; Manthiram, A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv. Funct. Mater. 2018, 28, 1801188.

[2]

Carbone, L.; Greenbaum, S. G.; Hassoun, J. Lithium sulfur and lithium oxygen batteries: New frontiers of sustainable energy storage. Sustain. Energy Fuels 2017, 1, 228–247.

[3]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[4]

Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J. W. Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2001456.

[5]

Zhang, S. G.; Ueno, K.; Dokko, K.; Watanabe, M. Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1500117.

[6]

Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

[7]

Xiao, J.; Hu, J. Z.; Chen, H. H.; Vijayakumar, M.; Zheng, J. M.; Pan, H. L.; Walter, E. D.; Hu, M.; Deng, X. C.; Feng, J. et al. Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett. 2015, 15, 3309–3316.

[8]

Wang, Q.; Zheng, J. M.; Walter, E.; Pan, H. L.; Lv, D. P.; Zuo, P. J.; Chen, H. H.; Deng, Z. D.; Liaw, B. Y.; Yu, X. Q. et al. Direct observation of sulfur radicals as reaction media in lithium sulfur batteries. J. Electrochem. Soc. 2015, 162, A474–A478.

[9]

Huang, Y. Z.; Lin, L.; Zhang, C. K.; Liu, L.; Li, Y. K.; Qiao, Z. S.; Lin, J.; Wei, Q. L.; Wang, L. S.; Xie, Q. S. et al. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 2022, 9, 2106004.

[10]

Di Donato, G.; Ates, T.; Adenusi, H.; Varzi, A.; Navarra, M. A.; Passerini, S. Electrolyte measures to prevent polysulfide shuttle in lithium-sulfur batteries. Batter. Supercaps 2022, 5, e202200097.

[11]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[12]

Liang, J.; Sun, Z. H.; Li, F.; Cheng, H. M. Carbon materials for Li-S batteries: Functional evolution and performance improvement. Energy Storage Mater. 2016, 2, 76–106.

[13]

Shi, H. F.; Lv, W.; Zhang, C.; Wang, D. W.; Ling, G. W.; He, Y. B.; Kang, F. Y.; Yang, Q. H. Functional carbons remedy the shuttling of polysulfides in lithium-sulfur batteries: Confining, trapping, blocking, and breaking up. Adv. Funct. Mater. 2018, 28, 1800508.

[14]

Tang, T. Y.; Hou, Y. L. Multifunctionality of carbon-based frameworks in lithium sulfur batteries. Electrochem. Energy Rev. 2018, 1, 403–432.

[15]

Benítez, A.; Amaro-Gahete, J.; Chien, Y. C.; Caballero, Á.; Morales, J.; Brandell, D. Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host. Renew. Sustain. Energy Rev. 2022, 154, 111783.

[16]

Wang, J.; Yang, J.; Xie, J.; Xu, N. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. Adv. Mater. 2002, 14, 963–965.

[17]

Li, W. Y.; Zhang, Q. F.; Zheng, G. Y.; Seh, Z. W.; Yao, H. B.; Cui, Y. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 2013, 13, 5534–5540.

[18]

Liu, Y.; Haridas, A. K.; Cho, K. K.; Lee, Y.; Ahn, J. H. Highly ordered mesoporous sulfurized polyacrylonitrile cathode material for high-rate lithium sulfur batteries. J. Phys. Chem. C 2017, 121, 26172–26179.

[19]

Cheng, C. S.; Chung, S. H. Rational design of high-performance nickel-sulfur nanocomposites by the electroless plating method for electrochemical lithium-sulfur battery cathodes. Batter. Supercaps 2022, 5, e202100323.

[20]

Cheng, C. S.; Chung, S. H. Nickel-plated sulfur nanocomposites for electrochemically stable high-loading sulfur cathodes in a lean-electrolyte lithium-sulfur cell. Chem. Eng. J. 2022, 429, 132257.

[21]

Marangon, V.; Hassoun, J. Sulfur loaded by nanometric tin as a new electrode for high-performance lithium/sulfur batteries. Energy Technol. 2019, 7, 1900081.

[22]

Park, J. S.; Kim, J. H.; Yang, S. J. Rational design of metal-organic framework-based-materials for advanced Li-S batteries. Bull. Korean Chem. Soc. 2021, 42, 148–158.

[23]

Zheng, Y.; Zheng, S. S.; Xue, H. G.; Pang, H. Metal-organic frameworks for lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 3469–3491.

[24]

de Haro, J.; Benítez, A.; Caballero, Á.; Morales, J. Revisiting the HKUST-1/S composite as an electrode for Li-S batteries: Inherent problems that hinder its performance. Eur. J. Inorg. Chem. 2021, 2021, 177–185.

[25]

Marangon, V.; Scaduti, E.; Vinci, V. F.; Hassoun, J. Scalable composites benefiting from transition metal oxides as cathode materials for efficient lithium-sulfur batteries. ChemElectroChem 2022, 9, e202200374.

[26]

Li, M. X.; Dai, Y.; Pei, X. M.; Chen, W. Hierarchically porous γ-Ti3O5 hollow nanospheres as an effective sulfur host for long-life lithium-sulfur batteries. Appl. Surf. Sci. 2022, 579, 152178.

[27]

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

[28]

Di Lecce, D.; Marangon, V.; Jung, H. G.; Tominaga, Y.; Greenbaum, S.; Hassoun, J. Glyme-based electrolytes: Suitable solutions for next-generation lithium batteries. Green Chem. 2022, 24, 1021–1048.

[29]

Zhang, S. G.; Ikoma, A.; Li, Z.; Ueno, K.; Ma, X. F.; Dokko, K.; Watanabe, M. Optimization of pore structure of cathodic carbon supports for solvate ionic liquid electrolytes based lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 27803–27813.

[30]

Marangon, V.; Minnetti, L.; Adami, M.; Barlini, A.; Hassoun, J. Lithium-metal batteries using sustainable electrolyte media and various cathode chemistries. Energy Fuels 2021, 35, 10284–10292.

[31]

Santiago, A.; Castillo, J.; Garbayo, I.; de Buruaga, A. S.; Coca Clemente, J. A.; Qiao, L. X.; Cid Barreno, R.; Martinez-Ibañez, M.; Armand, M.; Zhang, H. et al. Salt additives for improving cyclability of polymer-based all-solid-state lithium-sulfur batteries. ACS Appl. Energy Mater. 2021, 4, 4459–4464.

[32]

Marangon, V.; Di Lecce, D.; Minnetti, L.; Hassoun, J. Novel lithium-sulfur polymer battery operating at moderate temperature. ChemElectroChem 2021, 8, 3971–3981.

[33]

Zhang, Q.; Huang, N.; Huang, Z.; Cai, L. T.; Wu, J. H.; Yao, X. Y. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life. J. Energy Chem. 2020, 40, 151–155.

[34]

Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C. M.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives. Angew. Chem., Int. Edit. 2018, 57, 15002–15027.

[35]

Rosenman, A.; Elazari, R.; Salitra, G.; Markevich, E.; Aurbach, D.; Garsuch, A. The effect of interactions and reduction products of LiNO3, the anti-shuttle agent, in Li-S battery systems. J. Electrochem. Soc. 2015, 162, A470–A473.

[36]

Xiong, S. Z.; Xie, K.; Diao, Y.; Hong, X. B. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium-sulfur batteries. J. Power Sources 2014, 246, 840–845.

[37]

Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

[38]

Dörfler, S.; Althues, H.; Härtel, P.; Abendroth, T.; Schumm, B.; Kaskel, S. Challenges and key parameters of lithium-sulfur batteries on pouch cell level. Joule 2020, 4, 539–554.

[39]

Marangon, V.; Di Lecce, D.; Orsatti, F.; Brett, D. J. L.; Shearing, P. R.; Hassoun, J. Investigating high-performance sulfur-metal nanocomposites for lithium batteries. Sustain. Energy Fuels 2020, 4, 2907–2923.

[40]

Marangon, V.; Di Lecce, D.; Brett, D. J. L.; Shearing, P. R.; Hassoun, J. Characteristics of a gold-doped electrode for application in high-performance lithium-sulfur battery. J. Energy Chem. 2022, 64, 116–128.

[41]

Benítez, A.; Caballero, Á.; Rodríguez-Castellón, E.; Morales, J.; Hassoun, J. The role of current collector in enabling the high performance of Li/S battery. ChemistrySelect 2018, 3, 10371–10377.

[42]

Benítez, A.; Luna-Lama, F.; Caballero, A.; Rodríguez-Castellón, E.; Morales, J. Contribution to the understanding of the performance differences between commercial current collectors in Li-S batteries. J. Energy Chem. 2021, 62, 295–306.

[43]

Brehm, W.; Marangon, V.; Panda, J.; Thorat, S. B.; del Rio Castillo, A. E.; Bonaccorso, F.; Pellegrini, V.; Hassoun, J. A lithium-sulfur battery using binder-free graphene-coated aluminum current collector. Energy Fuels 2022, 36, 9321–9328.

[44]

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

[45]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

[46]

Carbone, L.; Del Rio Castillo, A. E.; Panda, J. K.; Pugliese, G.; Scarpellini, A.; Bonaccorso, F.; Pellegrini, V. High-sulfur-content graphene-based composite through ethanol evaporation for high-energy lithium-sulfur battery. ChemSusChem 2020, 13, 1593–1602.

[47]
Del Rio Castillo, A. E.; Ansaldo, A.; Pellegrini, V.; Bonaccorso, F. Exfoliation of layered materials by wet-jet milling techniques. U. S. Patent 10, 407, 308, September 10, 2019.
[48]

Del Rio Castillo, A. E.; Pellegrini, V.; Ansaldo, A.; Ricciardella, F.; Sun, H.; Marasco, L.; Buha, J.; Dang, Z.; Gagliani, L.; Lago, E. et al. High-yield production of 2D crystals by wet-jet milling. Mater. Horiz. 2018, 5, 890–904.

[49]

Venezia, E.; Carbone, L.; Bonaccorso, F.; Pellegrini, V. Tuning the morphology of sulfur-few layer graphene composites via liquid phase evaporation for battery application. Nanoscale Adv. 2022, 4, 1136–1144.

[50]

Su, Y. S.; Fu, Y. Z.; Manthiram, A. Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys. Chem. Chem. Phys. 2012, 14, 14495–14499.

[51]

Carbone, L.; Coneglian, T.; Gobet, M.; Munoz, S.; Devany, M.; Greenbaum, S.; Hassoun, J. A simple approach for making a viable, safe, and high-performances lithium-sulfur battery. J. Power Sources 2018, 377, 26–35.

[52]

Zhu, L.; Peng, H. J.; Liang, J. Y.; Huang, J. Q.; Chen, C. M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as free-standing paper electrode for high-rate and ultra-stable lithium-sulfur batteries. Nano Energy 2015, 11, 746–755.

[53]

Zhai, P. Y.; Huang, J. Q.; Zhu, L.; Shi, J. L.; Zhu, W. C.; Zhang, Q. Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density. Carbon 2017, 111, 493–501.

[54]

Di Lecce, D.; Marangon, V.; Du, W. J.; Brett, D. J. L.; Shearing, P. R.; Hassoun, J. The role of synthesis pathway on the microstructural characteristics of sulfur-carbon composites: X-ray imaging and electrochemistry in lithium battery. J. Power Sources 2020, 472, 228424.

[55]

Boukamp, B. A. A package for impedance/admittance data analysis. Solid State Ion. 1986, 18–19, 136–140.

[56]

Boukamp, B. A. A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion. 1986, 20, 31–44.

[57]

Randles, J. E. B. A cathode ray polarograph. Part II.—The current–voltage curves. Trans. Faraday Soc. 1948, 44, 327–338.

[58]

Ševčík, A. Oscillographic polarography with periodical triangular voltage. Collect. Czech. Chem. Commun. 1948, 13, 349–377.

[59]

Zhou, G. M.; Zhao, Y. B.; Manthiram, A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv. Energy Mater. 2015, 5, 1402263.

[60]

Yuan, Z.; Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Wang, D. W.; Cheng, X. B.; Zhang, Q. Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 6105–6112.

[61]

Zhang, Y. Y.; Gao, Z.; Song, N. N.; He, J. J.; Li, X. D. Graphene and its derivatives in lithium-sulfur batteries. Mater. Today Energy 2018, 9, 319–335.

[62]

Shi, H. D.; Zhao, X. J.; Wu, Z. S.; Dong, Y. F.; Lu, P. F.; Chen, J.; Ren, W. C.; Cheng, H. M.; Bao, X. H. Free-standing integrated cathode derived from 3D graphene/carbon nanotube aerogels serving as binder-free sulfur host and interlayer for ultrahigh volumetric-energy-density lithium-sulfur batteries. Nano Energy 2019, 60, 743–751.

[63]

Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705590.

[64]

Strubel, P.; Thieme, S.; Weller, C.; Althues, H.; Kaskel, S. Insights into the redistribution of sulfur species during cycling in lithium-sulfur batteries using physisorption methods. Nano Energy 2017, 34, 437–441.

[65]

Tan, C.; Heenan, T. M. M.; Ziesche, R. F.; Daemi, S. R.; Hack, J.; Maier, M.; Marathe, S.; Rau, C.; Brett, D. J. L.; Shearing, P. R. Four-dimensional studies of morphology evolution in lithium-sulfur batteries. ACS Appl. Energy Mater. 2018, 1, 5090–5100.

[66]

Aurbach, D. Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 2000, 89, 206–218.

[67]

Benítez, A.; Di Lecce, D.; Caballero, Á.; Morales, J.; Rodríguez-Castellón, E.; Hassoun, J. Lithium sulfur battery exploiting material design and electrolyte chemistry: 3D graphene framework and diglyme solution. J. Power Sources 2018, 397, 102–112.

[68]

Benítez, A.; Marangon, V.; Hernández-Rentero, C.; Caballero, Á.; Morales, J.; Hassoun, J. Porous Cr2O3@C composite derived from metal organic framework in efficient semi-liquid lithium-sulfur battery. Mater. Chem. Phys. 2020, 255, 123484.

[69]

Hagen, M.; Fanz, P.; Tübke, J. Cell energy density and electrolyte/sulfur ratio in Li-S cells. J. Power Sources 2014, 264, 30–34.

[70]

Jiménez-Martín, G.; Castillo, J.; Judez, X.; Gómez-Urbano, J. L.; Moreno-Fernández, G.; Santiago, A.; de Buruaga, A. S.; Garbayo, I.; Coca-Clemente, J. A.; Villaverde, A. et al. Graphene-based activated carbon composites for high performance lithium-sulfur batteries. Batter. Supercaps 2022, 5, e202200167.

[71]

Kim, H.; Lee, J. T.; Yushin, G. High temperature stabilization of lithium-sulfur cells with carbon nanotube current collector. J. Power Sources 2013, 226, 256–265.

[72]

Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.

[73]

Cheng, Q.; Chen, Z. X.; Li, X. Y.; Hou, L. P.; Bi, C. X.; Zhang, X. Q.; Huang, J. Q.; Li, B. Q. Constructing a 700 Wh·kg−1-level rechargeable lithium-sulfur pouch cell. J. Energy Chem. 2023, 76, 181–186.

File
5364_ESM.pdf (4.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 August 2022
Revised: 04 November 2022
Accepted: 27 November 2022
Published: 05 March 2023
Issue date: June 2023

Copyright

© The author(s) 2023

Acknowledgements

Acknowledgements

This project/work has received funding from the European Union’s Horizon 2020 research and innovation programme Graphene Flagship (No. 881603). The authors also thank grant “Fondo di Ateneo per la Ricerca Locale (FAR) 2021”, University of Ferrara, and the collaboration project “Accordo di Collaborazione Quadro 2015” between University of Ferrara (Department of Chemical and Pharmaceutical Sciences) and Sapienza University of Rome (Department of Chemistry).

Rights and permissions

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return