Journal Home > Volume 16 , Issue 5

Black phosphorus (BP) is an attractive material for two-dimensional (2D) electronics and optoelectronics given its direct optical band gap in the bulk. However, the vulnerability of BP to oxygen and moisture under ambient conditions has been a significant impediment for the adoption of this material towards practical applications. This vulnerability has also curtailed the development of additively manufactured, solution processed, ink-jet printed BP devices, which are cost-effective alternatives to lithographically patterned rigid electronics and optoelectronics based on silicon. In this work, we have fabricated stable BP electronic devices on flexible and compliant substrates using low-cost, additive manufacturing techniques with ink-jet printing through scalable chemical exfoliation routes. To address the stability issues with BP, ionic liquids (ILs) were used as a passivation layer on the surface of the BP to minimize oxidative degradation. The enhanced stability of BP was inferred through Raman spectroscopy and scanning probe microscopy techniques, where no observable changes in the Ag1 and Ag2 Raman vibrational modes were observed with time for the BP films passivated with ILs over a period of 168 h under ambient conditions. On the other hand, a blue-shift in these Raman modes was evident for unpassivated samples. Atomic probe microscopy measurements clearly revealed the difference in the surface characteristics through localized regions of degradation that intensified with time, which was clearly absent in IL/BP samples. The stability measurements were also conducted in electronic device platforms for IL coated BP devices, where the temperature T dependence of the IdsVds characteristic was measured from T ~ 5.4 to 335 K. Prototypical demonstrations of stabilized ILs/BP devices at ambient printed on flexible polyimide substrates were also made. The irradiation with broadband radiation appears to have a significant influence on the electrical behavior of BP, evident through the variation of photocurrent with temperature. Overall, our study shows that by engineering the exfoliation chemistry of BP with the use of ILs, highly concentrated BP inks can be additively manufactured, that present remarkable opportunities for the large-area integration of BP in printed and flexible electronics using low-cost, scalable approaches benefiting from the direct bandgap characteristics of BP in the bulk.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ionic liquid passivated black phosphorus for stabilized compliant electronics

Show Author's information Ravindra Mehta1,§Misook Min1,§Ridwan F. Hossain2Gustavo A. Saenz2Gerardo Gamboa1Anupama B. Kaul1,2( )
Department of Materials Science and Engineering, PACCAR Technology Institute, University of North Texas, Denton, TX 76207, USA
Department of Electrical Engineering, University of North Texas, Denton, TX 76207, USA

§ Ravindra Mehta and Misook Min contributed equally to this work.

Abstract

Black phosphorus (BP) is an attractive material for two-dimensional (2D) electronics and optoelectronics given its direct optical band gap in the bulk. However, the vulnerability of BP to oxygen and moisture under ambient conditions has been a significant impediment for the adoption of this material towards practical applications. This vulnerability has also curtailed the development of additively manufactured, solution processed, ink-jet printed BP devices, which are cost-effective alternatives to lithographically patterned rigid electronics and optoelectronics based on silicon. In this work, we have fabricated stable BP electronic devices on flexible and compliant substrates using low-cost, additive manufacturing techniques with ink-jet printing through scalable chemical exfoliation routes. To address the stability issues with BP, ionic liquids (ILs) were used as a passivation layer on the surface of the BP to minimize oxidative degradation. The enhanced stability of BP was inferred through Raman spectroscopy and scanning probe microscopy techniques, where no observable changes in the Ag1 and Ag2 Raman vibrational modes were observed with time for the BP films passivated with ILs over a period of 168 h under ambient conditions. On the other hand, a blue-shift in these Raman modes was evident for unpassivated samples. Atomic probe microscopy measurements clearly revealed the difference in the surface characteristics through localized regions of degradation that intensified with time, which was clearly absent in IL/BP samples. The stability measurements were also conducted in electronic device platforms for IL coated BP devices, where the temperature T dependence of the IdsVds characteristic was measured from T ~ 5.4 to 335 K. Prototypical demonstrations of stabilized ILs/BP devices at ambient printed on flexible polyimide substrates were also made. The irradiation with broadband radiation appears to have a significant influence on the electrical behavior of BP, evident through the variation of photocurrent with temperature. Overall, our study shows that by engineering the exfoliation chemistry of BP with the use of ILs, highly concentrated BP inks can be additively manufactured, that present remarkable opportunities for the large-area integration of BP in printed and flexible electronics using low-cost, scalable approaches benefiting from the direct bandgap characteristics of BP in the bulk.

Keywords: ionic liquids, black phosphorus, flexible electronics, 2D materials, ink-jet printing

References(56)

[1]

Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

[2]

Kaul, A. B. Two-dimensional layered materials: Structure, properties, and prospects for device applications. J. Mater. Res. 2014, 29, 348–361.

[3]

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

[4]

Pak, J.; Jang, J.; Cho, K.; Kim, T. Y.; Kim, J. K.; Song, Y.; Hong, W. K.; Min, M.; Lee, H.; Lee, T. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine. Nanoscale 2015, 7, 18780–18788.

[5]

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

[6]

Bandyopadhyay, A. S.; Biswas, C.; Kaul, A. B. Light-matter interactions in two-dimensional layered WSe2 for gauging evolution of phonon dynamics. Beilstein J. Nanotechnol. 2020, 11, 782–797.

[7]

Hossain, R. F.; Min, M.; Ma, L. C.; Sakri, S. R.; Kaul, A. B. Carrier photodynamics in 2D perovskites with solution-processed silver and graphene contacts for bendable optoelectronics. npj 2D Mater. Appl. 2021, 5, 34.

[8]

Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

[9]

Wang, X. M.; Jones, A. M.; Seyler, K. L.; Tran, V.; Jia, Y. C.; Zhao, H.; Wang, H.; Yang, L.; Xu, X. D.; Xia, F. N. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 2015, 10, 517–521.

[10]

Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

[11]

Liu, H.; Du, Y. C.; Deng, Y. X.; Ye, P. D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743.

[12]

Mas-Ballesté, R.; Gómez-Navarro, C.; Gómez-Herrero, J.; Zamora, F. 2D materials: To graphene and beyond. Nanoscale 2011, 3, 20–30.

[13]

Min, M.; Seo, S.; Yoon, Y.; Cho, K.; Lee, S. M.; Lee, T.; Lee, H. Catalyst-free bottom-up growth of graphene nanofeatures along with molecular templates on dielectric substrates. Nanoscale 2016, 8, 17022–17029.

[14]

Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

[15]

Chugh, S.; Adhikari, N.; Lee, J. H.; Berman, D.; Echegoyen, L.; Kaul, A. B. Dramatic enhancement of optoelectronic properties of electrophoretically deposited C60-graphene hybrids. ACS Appl. Mater. Interfaces 2019, 11, 24349–24359.

[16]

Bandyopadhyay, A. S.; Adhikari, N.; Kaul, A. B. Quantum multibody interactions in halide-assisted vapor-synthesized monolayer WSe2 and its integration in a high responsivity photodetector with low-interface trap density. Chem. Mater. 2019, 31, 9861–9874.

[17]

Cho, K.; Min, M.; Kim, T. Y.; Jeong, H.; Pak, J.; Kim, J. K.; Jang, J.; Yun, S. J.; Lee, Y. H.; Hong, W. K. et al. Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules. ACS Nano 2015, 9, 8044–8053.

[18]

Jayanand, K.; Chugh, S.; Adhikari, N.; Min, M.; Echegoyen, L.; Kaul, A. B. Sc3N@C80 and La@C82 doped graphene for a new class of optoelectronic devices. J. Mater. Chem. C 2020, 8, 3970–3981.

[19]

Abbas, A. N.; Liu, B. L.; Chen, L.; Ma, Y. Q.; Cong, S.; Aroonyadet, N.; Köpf, M.; Nilges, T.; Zhou, C. W. Black phosphorus gas sensors. ACS Nano 2015, 9, 5618–5624.

[20]

Tran, V.; Soklaski, R.; Liang, Y. F.; Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 2014, 89, 235319.

[21]

Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 2014, 8, 899–907.

[22]

Gómez-Pérez, J.; Barna, B.; Tóth, I. Y.; Kónya, Z.; Kukovecz, Á. Quantitative tracking of the oxidation of black phosphorus in the few-layer regime. ACS Omega 2018, 3, 12482–12488.

[23]

Youngblood, N.; Chen, C.; Koester, S. J.; Li, M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nat. Photon. 2015, 9, 247–252.

[24]

Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

[25]

Fei, R. X.; Yang, L. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 2014, 14, 2884–2889.

[26]

Du, Y. C.; Liu, H.; Deng, Y. X.; Ye, P. D. Device perspective for black phosphorus field-effect transistors: Contact resistance, ambipolar behavior, and scaling. ACS Nano 2014, 8, 10035–10042.

[27]

Yuan, H. T.; Liu, X. G.; Afshinmanesh, F.; Li, W.; Xu, G.; Sun, J.; Lian, B.; Curto, A. G.; Ye, G. J.; Hikita, Y. et al. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol. 2015, 10, 707–713.

[28]

Huang, M. Q.; Wang, M. L; Chen, C.; Ma, Z. W; Li, X. F.; Han, J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481–3485.

[29]

Zhu, W. N.; Yogeesh, M. N.; Yang, S. X.; Aldave, S. H.; Kim, J. S.; Sonde, S.; Tao, L.; Lu, N. S.; Akinwande, D. Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. Nano Lett. 2015, 15, 1883–1890.

[30]

Hao, C. X.; Yang, B. C.; Wen, F. S.; Xiang, J. Y.; Li, L.; Wang, W. H.; Zeng, Z. M.; Xu, B.; Zhao, Z. S.; Liu, Z. Y. et al. Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 2016, 28, 3194–3201.

[31]

Zhu, W. N.; Park, S.; Yogeesh, M. N.; McNicholas, K. M.; Bank, S. R.; Akinwande, D. Black phosphorus flexible thin film transistors at gighertz frequencies. Nano Lett. 2016, 16, 2301–2306.

[32]

Koenig, S. P.; Doganov, R. A.; Schmidt, H.; Neto, A. H. C.; Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 2014, 104, 103106.

[33]

Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

[34]

Li, L. K.; Kim, J.; Jin, C. H.; Ye, G. J.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z. W.; Chen, L.; Zhang, Z. C.; Yang, F. Y. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 2017, 12, 21–25.

[35]

Hanlon, D.; Backes, C.; Doherty, E.; Cucinotta, C. S.; Berner, N. C.; Boland, C.; Lee, K.; Harvey, A.; Lynch, P.; Gholamvand, Z. et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nat. Commun. 2015, 6, 8563.

[36]

Kang, J.; Wood, J. D.; Wells, S. A.; Lee, J. H.; Liu, X. L.; Chen, K. S.; Hersam, M. C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 2015, 9, 3596–3604.

[37]

Batool, S.; Idrees, M.; Zhang, S. R.; Han, S. T.; Zhou, Y. Novel charm of 2D materials engineering in memristor: When electronics encounter layered morphology. Nanoscale Horiz. 2022, 7, 480–507.

[38]

Chen, R. S.; Ding, G. L.; Zhou, Y.; Han, S. T. Fermi-level depinning of 2D transition metal dichalcogenide transistors. J. Mater. Chem. C 2021, 9, 11407–11427.

[39]

Wood, J. D.; Wells, S. A.; Jariwala, D.; Chen, K. S.; Cho, E.; Sangwan, V. K.; Liu, X. L.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 2014, 14, 6964–6970.

[40]

Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L’Heureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826–832.

[41]

Ling, Z. H.; Li, P.; Zhang, S. Y.; Arif, N.; Zeng, Y. J. Stability and passivation of 2D group VA elemental materials: Black phosphorus and beyond. J. Phys. Condens. Matter 2022, 34, 224004.

[42]

Moschetto, S.; Prescimone, F.; Bolognesi, M.; Toffanin, S. Smart synthetic and surface-engineering approaches to functionalize 2D black phosphorus for real-setting applications. Adv. Mater. Interfaces 2022, 9, 2102149.

[43]

Island, J. O.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Environmental instability of few-layer black phosphorus. 2D Mater. 2015, 2, 011002.

[44]

Gamboa, G.; Mazumder, S.; Hnatchuk, N.; Catalan, J. A.; Cortes, D.; Chen, I.; Perez, P.; Brostow, W.; Kaul, A. B. 3D-printed and injection molded polymer matrix composites with 2D layered materials. J. Vac. Sci. Technol. A 2020, 38, 042201.

[45]

Michel, M.; Desai, J. A.; Biswas, C.; Kaul, A. B. Engineering chemically exfoliated dispersions of two-dimensional graphite and molybdenum disulphide for ink-jet printing. Nanotechnology 2016, 27, 485602.

[46]

Desai, J. A.; Bandyopadhyay, A.; Min, M.; Saenz, G.; Kaul, A. B. A photo-capacitive sensor operational from 6 K to 350 K with a solution printable, thermally-robust hexagonal boron nitride (h-BN) dielectric and conductive graphene electrodes. Appl. Mater. Today 2020, 20, 100660.

[47]

Osim, W.; Stojanovic, A.; Akbarzadeh, J.; Peterlik, H.; Binder, W. H. Surface modification of MoS2 nanoparticles with ionic liquid-ligands: Towards highly dispersed nanoparticles. Chem. Commun. 2013, 49, 9311–9313.

[48]

Morishita, T.; Okamoto, H.; Katagiri, Y.; Matsushita, M.; Fukumori, K. A high-yield ionic liquid-promoted synthesis of boron nitride nanosheets by direct exfoliation. Chem. Commun. 2015, 51, 12068–12071.

[49]

Chaban, V. V.; Fileti, E. E.; Prezhdo, O. V. Exfoliation of graphene in ionic liquids: Pyridinium versus pyrrolidinium. J. Phys. Chem. C 2017, 121, 911–917.

[50]

Lee, M.; Roy, A. K.; Jo, S.; Choi, Y.; Chae, A.; Kim, B.; Park, S. Y.; In, I. Exfoliation of black phosphorus in ionic liquids. Nanotechnology 2017, 28, 125603.

[51]

Desai, J. A.; Adhikari, N.; Kaul, A. B. Chemical exfoliation efficacy of semiconducting WS2 and its use in an additively manufactured heterostructure graphene-WS2-graphene photodiode. RSC Adv. 2019, 9, 25805–25816.

[52]

Hossain, R. F.; Deaguero, I. G.; Boland, T.; Kaul, A. B. Biocompatible, large-format, inkjet printed heterostructure MoS2-graphene photodetectors on conformable substrates. npj 2D Mater. Appl. 2017, 1, 28.

[53]

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

[54]

Ziletti, A.; Carvalho, A.; Campbell, D. K.; Coker, D. F.; Castro Neto, A. H. Oxygen defects in phosphorene. Phys. Rev. Lett. 2015, 114, 046801.

[55]

Huang, Y.; Qiao, J. S.; He, K.; Bliznakov, S.; Sutter, E.; Chen, X. J.; Luo, D.; Meng, F. K.; Su, D.; Decker, J. et al. Interaction of black phosphorus with oxygen and water. Chem. Mater. 2016, 28, 8330–8339.

[56]

Walia, S.; Balendhran, S.; Ahmed, T.; Singh, M.; El-Badawi, C.; Brennan, M. D.; Weerathunge, P.; Karim, M. N.; Rahman, F.; Rassell, A. et al. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater. 2017, 29, 1700152.

File
12274_2022_5360_MOESM1_ESM.pdf (336.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 October 2022
Revised: 22 November 2022
Accepted: 27 November 2022
Published: 12 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We thank the National Science Foundation (No. NSF ECCS 1753933) and the Office of Naval Research (ONR) (No. ONR N00014-19-1-2142) that enabled us to pursue this work. Daniel Pleshek is acknowledged for his assistance in mechanically exfoliating some of the BP samples for the stability tests. A. B. K. is also grateful to the support received from the University of North Texas (UNT) PACCAR Technology Institute and Endowed Professorship.

Return