Journal Home > Volume 16 , Issue 5

Lithium-oxygen (Li-O2) batteries have been considered as an ideal solution to solving the global energy crisis. Silver (Ag) and Ag-based catalyst have been extensively studied due to their high catalytic activities in Li-O2 batteries. However, it remains a challenge to track the catalytic mechanism during the charge/discharge process. Here, a nanoscale processing method was used to assemble a Li-O2 nanobattery in an aberration-corrected environmental transmission electron microscope (ETEM), where a single Ag nanowire (NW) was used as catalyst for O2 electrode. A visualization of the lithium ion insertion process during the electrochemical reactions was achieved in this nanobattery. Numerous Ag nanoparticles (NPs) were observed on the surface of the Ag NW, which were covered by the discharge product Li2O2. By simultaneously studying the evolution of the interface and the phase transformation, it can be concluded that these Ag NPs wrapped around Ag NW acted as catalyst during the subsequent charge/discharge reaction. Based on these studies, Ag NPs decorated on porous carbon were synthesized, and it can simultaneously improve the cycling stability (100 cycles) and the maximum specific capacity (17,371 mAh·g−1 at a current density of 100 mA·g−1) in a coin cell Li-O2 battery. This study suggests that nanoscale Ag may be a promising catalyst for Li-O2 battery.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In situ TEM visualization of Ag catalysis in Li-O2 nanobatteries

Show Author's information Yixuan Wen1,2,§Shuaijun Ding2,§Chongchong Ma1,§Peng Jia1,2( )Wei Tu2Yunna Guo2Shuang Guo1Wei Zhou1Xiaoqian Zhang2Jianyu Huang2Liqiang Zhang2Tongde Shen2( )Yuqing Qiao1,2( )
Hebei Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

§ Yixuan Wen, Shuaijun Ding, and Chongchong Ma contributed equally to this work.

Abstract

Lithium-oxygen (Li-O2) batteries have been considered as an ideal solution to solving the global energy crisis. Silver (Ag) and Ag-based catalyst have been extensively studied due to their high catalytic activities in Li-O2 batteries. However, it remains a challenge to track the catalytic mechanism during the charge/discharge process. Here, a nanoscale processing method was used to assemble a Li-O2 nanobattery in an aberration-corrected environmental transmission electron microscope (ETEM), where a single Ag nanowire (NW) was used as catalyst for O2 electrode. A visualization of the lithium ion insertion process during the electrochemical reactions was achieved in this nanobattery. Numerous Ag nanoparticles (NPs) were observed on the surface of the Ag NW, which were covered by the discharge product Li2O2. By simultaneously studying the evolution of the interface and the phase transformation, it can be concluded that these Ag NPs wrapped around Ag NW acted as catalyst during the subsequent charge/discharge reaction. Based on these studies, Ag NPs decorated on porous carbon were synthesized, and it can simultaneously improve the cycling stability (100 cycles) and the maximum specific capacity (17,371 mAh·g−1 at a current density of 100 mA·g−1) in a coin cell Li-O2 battery. This study suggests that nanoscale Ag may be a promising catalyst for Li-O2 battery.

Keywords: catalyst, Ag nanoparticles, Li-O2 battery, in situ environmental transmission electron microscopy

References(43)

[1]

Littauer, E. L.; Tsai, K. C. Anodic behavior of lithium in aqueous electrolytes: I. Transient passivation. J. Electrochem. Soc. 1976, 123, 771–776.

[2]

Yi, J.; Liu, Y.; Qiao, Y.; He, P.; Zhou, H. S. Boosting the cycle life of Li-O2 batteries at elevated temperature by employing a hybrid polymer-ceramic solid electrolyte. ACS Energy Lett. 2017, 2, 1378–1384.

[3]

Zhao, G. Y.; Xu, Z. M.; Sun, K. N. Hierarchical porous Co3O4 films as cathode catalysts of rechargeable Li-O2 batteries. J. Mater. Chem. A 2013, 1, 12862–12867.

[4]

Hardwick, L. J.; Bruce, P. G. The pursuit of rechargeable non-aqueous lithium-oxygen battery cathodes. Curr. Opin. Solid State Mater. Sci. 2012, 16, 178–185.

[5]

Isaev, V. V.; Sergeev, A. V.; Zakharchenko, T. K.; Itkis, D. M.; Groß, A.; Yashina, L. V. Impact of cathodic electric double layer composition on the performance of aprotic Li-O2 batteries. J. Electrochem. Soc. 2021, 168, 030520.

[6]

Mu, X. W.; Xia, C.; Gao, B.; Guo, S. Y.; Zhang, X. P.; He, J. P.; Wang, Y. G.; Dong, H.; He, P.; Zhou, H. S. Two-dimensional Mo-based compounds for the Li-O2 batteries: Catalytic performance and electronic structure studies. Energy Storage Mater. 2021, 41, 650–655.

[7]

Jiang, Z. L.; Xu, G. L.; Yu, Z.; Zhou, T. H.; Shi, W. K.; Luo, C. S.; Zhou, H. J.; Chen, L. B.; Sheng, W. J.; Zhou, M. X. et al. High rate and long cycle life in Li-O2 batteries with highly efficient catalytic cathode configured with Co3O4 nanoflower. Nano Energy 2019, 64, 103896.

[8]

Wang, F.; Wen, Z. Y.; Shen, C.; Wu, X. W.; Liu, J. J. Synthesis of α-MnO2 nanowires modified by Co3O4 nanoparticles as a high-performance catalyst for rechargeable Li-O2 batteries. Phys. Chem. Chem. Phys. 2016, 18, 926–931.

[9]

Zhou, Y.; Zhao, Y.; Liu, Z. J.; Peng, Z. Q.; Wang, L.; Chen, W. Confining Li2O2 in tortuous pores of mesoporous cathodes to facilitate low charge overpotentials for Li-O2 batteries. J. Energy Chem. 2021, 55, 55–61.

[10]

Hou, Z. Q.; Feng, S.; Hei, P.; Yang, T. S.; Ran, Z. Q.; Zheng, R. X.; Liao, X.; Shu, C. Z.; Long, J. P. Morphology regulation of Li2O2 by flower-like ZnCo2S4 enabling high performance Li-O2 battery. J. Power Sources 2019, 441, 227168.

[11]

Lee, Y. J.; Kim, D. H.; Kang, T. G.; Ko, Y.; Kang, K.; Lee, Y. J. Bifunctional MnO2-coated Co3O4 hetero-structured catalysts for reversible Li-O2 batteries. Chem. Mater. 2017, 29, 10542–10550.

[12]

Sun, W.; Wang, Y.; Wu, H. T.; Wang, Z. H.; Rooney, D.; Sun, K. N. 3D free-standing hierarchical CuCo2O4 nanowire cathodes for rechargeable lithium-oxygen batteries. Chem. Commun. 2017, 53, 8711–8714.

[13]

Hou, Y.; Wang, J.; Liu, J. Q.; Hou, C. X.; Xiu, Z. H.; Fan, Y. Q.; Zhao, L. L.; Zhai, Y. J.; Li, H. Y.; Zeng, J. et al. Interfacial super-assembled porous CeO2/C frameworks featuring efficient and sensitive decomposing Li2O2 for smart Li-O2 batteries. Adv. Energy Mater. 2019, 9, 1901751.

[14]

Chang, Y. Q.; Dong, S. M.; Ju, Y. H.; Xiao, D. D.; Zhou, X. H.; Zhang, L. X.; Chen, X.; Shang, C. Q.; Gu, L.; Peng, Z. Q. et al. A carbon-and binder-free nanostructured cathode for high-performance nonaqueous Li-O2 battery. Adv. Sci. 2015, 2, 1500092.

[15]

Li, F. J.; Tang, D. M.; Chen, Y.; Golberg, D.; Kitaura, H.; Zhang, T.; Yamada, A.; Zhou, H. S. Ru/ITO: A carbon-free cathode for nonaqueous Li-O2 battery. Nano Lett. 2013, 13, 4702–4707.

[16]

Riaz, A.; Jung, K. N.; Chang, W.; Shin, K. H.; Lee, J. W. Carbon-, binder-, and precious metal-free cathodes for non-aqueous lithium-oxygen batteries: Nanoflake-decorated nanoneedle oxide arrays. ACS Appl. Mater. Interfaces 2014, 6, 17815–17822.

[17]

Li, J. B.; Shu, C. Z.; Liu, C. H.; Chen, X. F.; Hu, A. J.; Long, J. P. Rationalizing the effect of oxygen vacancy on oxygen electrocatalysis in Li-O2 battery. Small 2020, 16, 2001812.

[18]

Wang, Y.; Li, J.; Wei, Z. D. Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8194–8209.

[19]

Guo, Q.; Zhang, C. W.; Zhang, C. F.; Xin, S.; Zhang, P. C.; Shi, Q. F.; Zhang, D. W.; You, Y. Co3O4 modified Ag/g-C3N4 composite as a bifunctional cathode for lithium-oxygen battery. J. Energy Chem. 2020, 41, 185–193.

[20]

Zhou, M. D.; Wang, Z.; Sun, Q.; Wang, J. Y.; Zhang, C. H.; Chen, D.; Li, X. B. High-performance Ag-Cu nanoalloy catalyst for the selective catalytic oxidation of ammonia. ACS Appl. Mater. Interfaces 2019, 11, 46875–46885.

[21]

Zhang, T. T.; Shang, H. S.; Zhang, B.; Yan, D. P.; Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.

[22]

Luo, B. M.; Zhao, Q.; Zhang, Y. Z.; Wang, L. J.; Li, F. F.; Xie, H. Q.; Cabrera, C. R. Core-shell Ag nanowires@Pt nanorods catalyst: Synthesis and application in direct methanol fuel cells. Mater. Lett. 2018, 233, 138–141.

[23]

Jiang, F. Y.; Zhou, Y. H.; Chen, R.; Liu, T. T.; Luo, J. Y.; Huang, Y. B. In situ fabrication of Ag nanoparticles on biomass derived biochar as highly active catalyst for the halogenation of terminal alkynes at room temperature. Appl. Surf. Sci. 2021, 560, 150039.

[24]

Lu, J.; Cheng, L.; Lau, K. C.; Tyo, E.; Luo, X. Y.; Wen, J. G.; Miller, D.; Assary, R. S.; Wang, H. H.; Redfern, P. et al. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium-oxygen batteries. Nat. Commun. 2014, 5, 4895.

[25]

Lu, X. Y.; Yin, Y.; Zhang, L.; Huang, S. Z.; Xi, L. X.; Liu, L. X.; Oswald, S.; Schmidt, O. G. 3D Ag/NiO-Fe2O3/Ag nanomembranes as carbon-free cathode materials for Li-O2 batteries. Energy Storage Mater. 2019, 16, 155–162.

[26]

Zhou, Z. R.; Shen, Z. R.; Song, C. L.; Li, M. M.; Li, H.; Zhan, S. H. Boosting the activation of molecular oxygen and the degradation of tetracycline over high loading Ag single atomic catalyst. Water Res. 2021, 201, 117314.

[27]

Liu, X. Y.; Li, Y. N.; Lee, J. W.; Hong, C. Y.; Mou, C. Y.; Jang, B. W. L. Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au-Ag bimetallic catalyst. Appl. Catal. A: Gen. 2012, 439–440, 8–14.

[28]

Mikheeva, N. N.; Zaikovskii, V. I.; Larichev, Y. V.; Mamontov, G. V. Toluene abatement on Ag-CeO2/SBA-15 catalysts: Synergistic effect of silver and ceria. Mater. Today Chem. 2021, 21, 100530.

[29]

Wang, R. M. The dynamics of the peel. Nat. Catal. 2020, 3, 333–334.

[30]

Zhu, Y. C.; Sun, Y. H.; Zhang, H. Z.; He, Y.; Liu, W.; Wang, R. M. Interface structure and strain controlled Pt nanocrystals grown at side facet of MoS2 with critical size. Nano Res. 2022, 15, 8493–8501.

[31]
Zhao, H. F.; Zhu, Y. C.; Ye, H. Y.; He, Y.; Li, H.; Sun, Y. F.; Yang, F.; Wang, R. M. Atomic-scale structure dynamics of nanocrystals revealed by in situ and environmental transmission electron microscopy. Adv. Mater., in press, DOI: 10.1002/adma.202206911.
[32]

Yan, Z.; Li, X. X.; Li, Y. S.; Jia, C. C.; Xin, N.; Li, P. H.; Meng, L. N.; Zhang, M.; Chen, L.; Yang, J. L. et al. Single-molecule field effect and conductance switching driven by electric field and proton transfer. Sci. Adv. 2022, 8, eabm3541.

[33]

Zhang, L. K.; Shang, N. Z.; Gao, S. T.; Wang, J. M.; Meng, T.; Du, C. C.; Shen, T. D.; Huang, J. Y.; Wu, Q. H.; Wang, H. J. et al. Atomically dispersed Co catalyst for efficient hydrodeoxygenation of lignin-derived species and hydrogenation of nitroaromatics. ACS Catal. 2020, 10, 8672–8682.

[34]

Qiao, Y. Q.; Jia, P.; Ren, W. Y.; Ding, S. J.; Wen, Y. X.; Zhang, X. Y.; Xia, M. R.; Fan, C. Z.; Gao, W. M.; Zhang, L. Q. et al. In situ observation of the electrochemical lithiation of a single MnO@C nanorod electrode with core/shell structure. Chem. Commun. 2022, 58, 879–882.

[35]

Wang, H.; Zhao, N.; Bi, Z. J.; Gao, S. H.; Dai, Q. S.; Yang, T. T.; Wang, J. W.; Jia, Z. Q.; Peng, Z. Q.; Huang, J. Y. et al. Clear representation of surface pathway reactions at Ag nanowire cathodes in all-solid Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 39157–39164.

[36]

Jia, P.; Yang, T. T.; Liu, Q. N.; Yan, J. T.; Shen, T. D.; Zhang, L. Q.; Liu, Y. N.; Zhao, X. X.; Gao, Z. Y.; Wang, J. et al. In situ imaging Co3O4 catalyzed oxygen reduction and evolution reactions in a solid state Na-O2 battery. Nano Energy 2020, 77, 105289.

[37]

Liu, Q. N.; Geng, L.; Yang, T. T.; Tang, Y. F.; Jia, P.; Li, Y. S.; Li, H.; Shen, T. D.; Zhang, L. Q.; Huang, J. Y. In situ imaging electrocatalysis in a Na-O2 battery with Au-coated MnO2 nanowires air cathode. Energy Storage Mater. 2019, 19, 48–55.

[38]

Liu, Q. N.; Tang, Y. F.; Sun, H. M.; Yang, T. T.; Sun, Y.; Du, C. C.; Jia, P.; Ye, H. J.; Chen, J. Z.; Peng, Q. M. et al. In situ electrochemical study of Na-O2/CO2 batteries in an environmental transmission electron microscope. ACS Nano 2020, 14, 13232–13245.

[39]

Zhan, Y.; Yu, S. Z.; Luo, S. H.; Feng, J.; Wang, Q. Nitrogen-coordinated CoS2@NC yolk–shell polyhedrons catalysts derived from a metal-organic framework for a highly reversible Li-O2 battery. ACS Appl. Mater. Interfaces 2021, 13, 17658–17667.

[40]

Ferrari, A. C.; Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246.

[41]

Jin, H. J.; Wang, X. L.; Parida, S.; Wang, K.; Seo, M.; Weissmüller, J. Nanoporous Au-Pt alloys as large strain electrochemical actuators. Nano Lett. 2010, 10, 187–194.

[42]

Xu, J.; Dong, H.; Xi, J.; Yang, Y. G.; Yu, Y.; Ma, L.; Chen, J. B.; Jiao, B.; Hou, X.; Li, J. R. et al. Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells. Nano Energy 2020, 75, 104940.

[43]

Wang, H. T.; Xu, S. C.; Tsai, C.; Li, Y. Z.; Liu, C.; Zhao, J.; Liu, Y. Y.; Yuan, H. Y.; Abild-Pedersen, F.; Prinz, F. B. et al. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 2016, 354, 1031–1036.

File
12274_2022_5359_MOESM1_ESM.pdf (996.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 September 2022
Revised: 25 November 2022
Accepted: 27 November 2022
Published: 05 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22279111), the China Postdoctoral Science Foundation (No. 2021M702756), and the Natural Science Foundation of Hebei Province (No. B2020203037).

Return