Journal Home > Volume 16 , Issue 5

Constructing 2D/2D face-to-face heterojunctions is believed to be an effective strategy to enhance photocatalytic performance due to the enlarged contact interface and increased surface active sites. Herein, 2D porous NiCo oxyphosphide (NiCoOP) was synthesized for the first time and coupled with graphitic carbon nitride (g-C3N4) nanosheets to form 2D/2D heterojunctions via an in-situ phosphating method. The optimal 4 wt.% 2D/2D NiCoOP/g-C3N4 (OPCN) photocatalyst achieves a hydrogen evolution rate of 1.4 mmol·h−1·g−1, which is 33 times higher than that of pure g-C3N4. The greatly improved photocatalytic performance of the composite photocatalysts could be attributed to the formation of interfacial surface bonding states and sufficient charge transfer channels for accelerating carrier separation and transfer and the porous structure of NiCoOP nanosheets with abundant surface active sites for promoting surface reactions. Amazingly, the 2D/2D OPCN composite photocatalysts also exhibit superior stability during photocatalytic reactions. This study not only designs new noble-metal-free NiCoOP/g-C3N4 composite photocatalysts but also provides a new sight in fabricating face-to-face 2D/2D heterojunctions for their application in energy conversion areas.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Face-to-face heterojunctions within 2D/2D porous NiCo oxyphosphide/g-C3N4 towards efficient and stable photocatalytic H2 evolution

Show Author's information Genrui Zhang1,2Xiaojing Li1,2Na Li1,2Tingting Wu1,2( )Lei Wang1,3,4( )
Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, Qingdao University of Science and Technology, Qingdao 266042, China
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

Abstract

Constructing 2D/2D face-to-face heterojunctions is believed to be an effective strategy to enhance photocatalytic performance due to the enlarged contact interface and increased surface active sites. Herein, 2D porous NiCo oxyphosphide (NiCoOP) was synthesized for the first time and coupled with graphitic carbon nitride (g-C3N4) nanosheets to form 2D/2D heterojunctions via an in-situ phosphating method. The optimal 4 wt.% 2D/2D NiCoOP/g-C3N4 (OPCN) photocatalyst achieves a hydrogen evolution rate of 1.4 mmol·h−1·g−1, which is 33 times higher than that of pure g-C3N4. The greatly improved photocatalytic performance of the composite photocatalysts could be attributed to the formation of interfacial surface bonding states and sufficient charge transfer channels for accelerating carrier separation and transfer and the porous structure of NiCoOP nanosheets with abundant surface active sites for promoting surface reactions. Amazingly, the 2D/2D OPCN composite photocatalysts also exhibit superior stability during photocatalytic reactions. This study not only designs new noble-metal-free NiCoOP/g-C3N4 composite photocatalysts but also provides a new sight in fabricating face-to-face 2D/2D heterojunctions for their application in energy conversion areas.

Keywords: photocatalyst, hydrogen evolution, 2D/2D heterojunction, graphitic carbon nitride (g-C3N4) nanosheets, 2D porous NiCo oxyphosphide (NiCoOP)

References(67)

[1]

Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T. et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307.

[2]

Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L. D.; Liu, S. H.; Teng, C. P.; Han, M. Y. Recent progress in energy-driven water splitting. Adv. Sci. 2017, 4, 1600337.

[3]

Hao, Q.; Jia, G. H.; Wei, W.; Vinu, A.; Wang, Y.; Arandiyan, H.; Ni, B. J. Graphitic carbon nitride with different dimensionalities for energy and environmental applications. Nano Res. 2020, 13, 18–37.

[4]

Fu, C. F.; Wu, X. J.; Yang, J. L. Material design for photocatalytic water splitting from a theoretical perspective. Adv. Mater. 2018, 30, 1802106.

[5]

Cao, S.; Piao, L. Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 18312–18320.

[6]

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[7]

Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401.

[8]

Xiong, S.; Tang, R. D.; Gong, D. X.; Deng, Y. C.; Zheng, J. F.; Li, L.; Zhou, Z. P.; Yang, L. H.; Su, L. Environmentally-friendly carbon nanomaterials for photocatalytic hydrogen production. Chin. J. Catal. 2022, 43, 1719–1748.

[9]

Fang, J. W.; Fan, H. Q.; Li, M. M.; Long, C. B. Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution. J. Mater. Chem. A 2015, 3, 13819–13826.

[10]

Niu, P.; Zhang, L. L.; Liu, G.; Cheng, H. M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

[11]

Mishra, A.; Mehta, A.; Basu, S.; Shetti, N. P.; Reddy, K. R.; Aminabhavi, T. M. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: A review. Carbon 2019, 149, 693–721.

[12]

Fu, J. W.; Yu, J. G.; Jiang, C. J.; Cheng, B. g-C3N4-based heterostructured photocatalysts. Adv. Energy Mater. 2018, 8, 1701503.

[13]

Lei, Y.; Huang, J. F.; Li, X. A.; Lv, C. Y.; Hou, C. P.; Liu, J. M. Direct Z-scheme photochemical hybrid systems: Loading porphyrin-based metal–organic cages on graphitic-C3N4 to dramatically enhance photocatalytic hydrogen evolution. Chin. J. Catal. 2022, 43, 2249–2258.

[14]

Chang, B. B.; Guo, Y. Z.; Liu, H. L.; Li, L.; Yang, B. C. Engineering a surface defect-rich Ti3C2 quantum dots/mesoporous C3N4 hollow nanosphere Schottky junction for efficient N2 photofixation. J. Mater. Chem. A 2022, 10, 3134–3145.

[15]

Maeda, K.; Kuriki, R.; Zhang, M. W.; Wang, X.; Ishitani, O. The effect of the pore-wall structure of carbon nitride on photocatalytic CO2 reduction under visible light. J. Mater. Chem. A 2014, 2, 15146–15151.

[16]

Kang, Y. Y.; Yang, Y. Q.; Yin, L. C.; Kang, X. D.; Wang, L. Z.; Liu, G.; Cheng, H. M. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Adv. Mater. 2016, 28, 6471–6477.

[17]

Yu, X. H.; Su, H. W.; Zou, J. P.; Liu, Q. Q.; Wang, L. L.; Tang, H. Doping-induced metal–N active sites and bandgap engineering in graphitic carbon nitride for enhancing photocatalytic H2 evolution performance. Chin. J. Catal. 2022, 43, 421–432.

[18]

Lv, S. J.; Ng, Y. H.; Zhu, R. X.; Li, S.; Wu, C. X.; Liu, Y. X.; Zhang, Y. F.; Jing, L.; Deng, J. G.; Dai, H. X. Phosphorus vapor assisted preparation of P-doped ultrathin hollow g-C3N4 sphere for efficient solar-to-hydrogen conversion. Appl. Catal. B Environ. 2021, 297, 120438.

[19]

Zhou, J.; Wang, F. F.; Wang, H. Q.; Hu, S. X.; Zhou, W. J.; Liu, H. Ferrocene-induced switchable preparation of metal–nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 2023, 2, 2085–2093.

[20]

Fang, Y. X.; Huang, W. X.; Yang, S. Y.; Zhou, X. F.; Ge, C. Y.; Gao, Q. Z.; Fang, Y. P.; Zhang, S. S. Facile synthesis of anatase/rutile TiO2/g-C3N4 multi-heterostructure for efficient photocatalytic overall water splitting. Int. J. Hydrogen Energy 2020, 45, 17378–17387.

[21]

Chen, Y. L.; Su, F. Y.; Xie, H. Q.; Wang, R. P.; Ding, C. H.; Huang, J. D.; Xu, Y. X.; Ye, L. Q. One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chem. Eng. J. 2021, 404, 126498.

[22]

Bafaqeer, A.; Tahir, M.; Amin, N. A. S. Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels. Appl. Catal. B Environ. 2019, 242, 312–326.

[23]

Ren, D. D.; Zhang, W. N.; Ding, Y. N.; Shen, R. C.; Jiang, Z. M.; Lu, X. Y.; Li, X. In situ fabrication of robust cocatalyst-free CdS/g-C3N4 2D-2D step-scheme heterojunctions for highly active H2 evolution. Solar RRL 2020, 4, 19005423.

[24]

Zou, Y. J.; Shi, J. W.; Sun, L.; Ma, D. D.; Mao, S. M.; Lv, Y. X.; Cheng, Y. H. Energy-band-controlled ZnxCd1−xIn2S4 solid solution coupled with g-C3N4 nanosheets as 2D/2D heterostructure toward efficient photocatalytic H2 evolution. Chem. Eng. J. 2019, 378, 122192.

[25]

Jia, J.; Sun, W. J.; Zhang, Q. Q.; Zhang, X. Z.; Hu, X. Y.; Liu, E. Z.; Fan, J. Inter-plane heterojunctions within 2D/2D FeSe2/g-C3N4 nanosheet semiconductors for photocatalytic hydrogen generation. Appl. Catal. B Environ. 2020, 261, 118249.

[26]

Zhu, B. C.; Cheng, B.; Fan, J. J.; Ho, W.; Yu, J. G. g-C3N4-based 2D/2D composite heterojunction photocatalyst. Small Struct. 2021, 2, 2100086.

[27]

Ong, W. J. 2D/2D graphitic carbon nitride (g-C3N4) heterojunction nanocomposites for photocatalysis: Why does face-to-face interface matter? Front. Mater. 2017, 4, 11.

[28]

She, X. J.; Wu, J. J.; Xu, H.; Zhong, J.; Wang, Y.; Song, Y. H.; Nie, K. Q.; Liu, Y.; Yang, Y. C.; Rodrigues, M. T. F. et al. High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts. Adv. Energy Mater. 2017, 7, 1700025.

[29]

Hong, I.; Chen, Y. A.; Hsu, Y. J.; Yong, K. Triple-channel charge transfer over W18O49/Au/g-C3N4 Z-scheme photocatalysts for achieving broad-spectrum solar hydrogen production. ACS Appl. Mater. Interfaces 2021, 13, 52670–52680.

[30]

Geng, Y. X.; Chen, D. Y.; Li, N. J.; Xu, Q. F.; Li, H.; He, J. H.; Lu, J. M. Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Appl. Catal. B Environ. 2021, 280, 119409.

[31]

Fu, J. W.; Xu, Q. L.; Low, J.; Jiang, C. J.; Yu, J. G. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565.

[32]

Deng, X.; Wang, D. D.; Li, H. J.; Jiang, W.; Zhou, T. Y.; Wen, Y.; Yu, B.; Che, G. B.; Wang, L. Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation. J. Alloys Compd. 2022, 894, 162209.

[33]

Liu, D.; Zhang, S.; Wang, J. M.; Peng, T. Y.; Li, R. J. Direct Z-scheme 2D/2D photocatalyst based on ultrathin g-C3N4 and WO3 nanosheets for efficient visible-light-driven H2 generation. ACS Appl. Mater. Interfaces 2019, 11, 27913–27923.

[34]

Shi, W. L.; Li, M. Y.; Huang, X. L.; Ren, H. J.; Yan, C.; Guo, F. Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light. Chem. Eng. J. 2020, 382, 122960.

[35]

Ran, J. R.; Guo, W. W.; Wang, H. L.; Zhu, B. C.; Yu, J. G.; Qiao, S. Z. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128.

[36]

Liu, W. B.; Zhang, D. G.; Wang, R. W.; Zhang, Z. T.; Qiu, S. L. 2D/2D interface engineering promotes charge separation of Mo2C/g-C3N4 nanojunction photocatalysts for efficient photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 2022, 14, 31782–31791.

[37]

Yang, T. Y.; Shao, Y. Y.; Hu, J. D.; Qu, J. F.; Yang, X. G.; Yang, F. Y.; Ming Li, C. Ultrathin layered 2D/2D heterojunction of ReS2/high-crystalline g-C3N4 for significantly improved photocatalytic hydrogen evolution. Chem. Eng. J. 2022, 448, 137613.

[38]

Wen, Y.; Wang, D. D.; Li, H. J.; Jiang, W.; Zhou, T. Y.; Deng, X.; Hu, B.; Liu, C. B.; Che, G. B. Enhanced photocatalytic hydrogen evolution of 2D/2D N-Sn3O4/g-C3N4 S-scheme heterojunction under visible light irradiation. Appl. Surf. Sci. 2021, 567, 150903.

[39]

Zhang, X.; Yuan, X. Z.; Jiang, L. B.; Zhang, J.; Yu, H. B.; Wang, H.; Zeng, G. M. Powerful combination of 2D g-C3N4 and 2D nanomaterials for photocatalysis: Recent advances. Chem. Eng. J. 2020, 390, 124475.

[40]

Wang, K.; Li, Y.; Li, J.; Zhang, G. K. Boosting interfacial charge separation of Ba5Nb4O15/g-C3N4 photocatalysts by 2D/2D nanojunction towards efficient visible-light driven H2 generation. Appl. Catal. B Environ. 2020, 263, 117730.

[41]

Pan, J. B.; Liu, X.; Wang, B. H.; Chen, Y. A.; Tan, H. Y.; Ouyang, J.; Zhou, W.; Shen, S.; Chen, L.; Au, C. T. et al. Conductive MOFs coating on hematite photoanode for activity boost via surface state regulation. Appl. Catal. B Environ. 2022, 315, 121526.

[42]

Cheng, C.; Zong, S. C.; Shi, J. W.; Xue, F.; Zhang, Y. Z.; Guan, X. J.; Zheng, B. T.; Deng, J. K.; Guo, L. J. Facile preparation of nanosized MoP as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Appl. Catal. B Environ. 2020, 265, 118620.

[43]

Shi, J. W.; Zou, Y. J.; Cheng, L. H.; Ma, D. D.; Sun, D. K.; Mao, S. M.; Sun, L.; He, C.; Wang, Z. Y. In-situ phosphating to synthesize Ni2P decorated NiO/g-C3N4 p-n junction for enhanced photocatalytic hydrogen production. Chem. Eng. J. 2019, 378, 122161.

[44]

Sun, Z. C.; Zhu, M. S.; Lv, X. S.; Liu, Y. Y.; Shi, C.; Dai, Y.; Wang, A. J.; Majima, T. Insight into iron group transition metal phosphides (Fe2P, Co2P, Ni2P) for improving photocatalytic hydrogen generation. Appl. Catal. B Environ. 2019, 246, 330–336.

[45]

Lv, X. D.; Li, X. T.; Yang, C.; Ding, X. Q.; Zhang, Y. F.; Zheng, Y. Z.; Li, S. Q.; Sun, X. N.; Tao, X. Large-size, porous, ultrathin NiCoP nanosheets for efficient electro/photocatalytic water splitting. Adv. Funct. Mater. 2020, 30, 1910830.

[46]

Guan, B. Y.; Yu, L.; Lou, X. W. General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 2386–2389.

[47]

Wang, Y.; Wang, S. B.; Lou, X. W. D. Dispersed nickel cobalt oxyphosphide nanoparticles confined in multichannel hollow carbon fibers for photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 17236–17240.

[48]

Peng, Z.; Jianping, L.; Yonghua, T.; Yuguang, C.; Fei, L.; Shaojun, G. Amorphous FeCoPOx nanowires coupled to g-C3N4 nanosheets with enhanced interfacial electronic transfer for boosting photocatalytic hydrogen production. Appl. Catal. B Environ. 2018, 238, 161–167.

[49]

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem., Int. Ed. 2021, 60, 1433–1440.

[50]

Pan, J. B.; Shen, S.; Chen, L.; Au, C. T.; Yin, S. F. Core–shell photoanodes for photoelectrochemical water oxidation. Adv. Funct. Mater. 2021, 31, 2104269.

[51]

Wang, H. Q. Nanostructure@metal–organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2021, 15, 2834–2854.

[52]

Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938.

[53]

Li, C. M.; Du, Y. H.; Wang, D. P.; Yin, S. M.; Tu, W. G.; Chen, Z.; Kraft, M.; Chen, G.; Xu, R. Unique P–Co–N surface bonding states constructed on g-C3N4 nanosheets for drastically enhanced photocatalytic activity of H2 evolution. Adv. Funct. Mater. 2017, 27, 1604328.

[54]

Hu, Y. D.; Qu, Y. T.; Zhou, Y. S.; Wang, Z. Y.; Wang, H. J.; Yang, B.; Yu, Z. Q.; Wu, Y. E. Single Pt atom-anchored C3N4: A bridging Pt–N bond boosted electron transfer for highly efficient photocatalytic H2 generation. Chem. Eng. J. 2021, 412, 128749.

[55]

Bi, F.; Su, Y. T.; Zhang, Y. L.; Chen, M. L.; Darr, J. A.; Weng, X. L.; Wu, Z. B. Vacancy-defect semiconductor quantum dots induced an S-scheme charge transfer pathway in 0D/2D structures under visible-light irradiation. Appl. Catal. B Environ. 2022, 306, 121109.

[56]

Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.

[57]

Wu, M.; Zhang, J.; He, B. B.; Wang, H. W.; Wang, R.; Gong, Y. S. In-situ construction of coral-like porous P-doped g-C3N4 tubes with hybrid 1D/2D architecture and high efficient photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2019, 241, 159–166.

[58]

Yu, H. G.; Chen, F. Y.; Chen, F.; Wang, X. F. In situ self-transformation synthesis of g-C3N4-modified CdS heterostructure with enhanced photocatalytic activity. Appl. Surf. Sci. 2015, 358, 385–392.

[59]

Shen, R. C.; He, K. L.; Zhang, A. P.; Li, N.; Ng, Y. H.; Zhang, P.; Hu, J.; Li, X. In-situ construction of metallic Ni3C@Ni core–shell cocatalysts over g-C3N4 nanosheets for shell-thickness-dependent photocatalytic H2 production. Appl. Catal. B Environ. 2021, 291, 120104.

[60]

Yang, C. W.; Qin, J. Q.; Xue, Z.; Ma, M. Z.; Zhang, X. Y.; Liu, R. P. Rational design of carbon-doped TiO2 modified g-C3N4 via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability. Nano Energy 2017, 41, 1–9.

[61]

He, B.; Wang, J.; Fan, Y. Q.; Jiang, Y. L.; Zhai, Y. J.; Wang, Y.; Huang, Q. S.; Dang, F.; Zhang, Z. D.; Wang, N. Mesoporous CoO/Co-N-C nanofibers as efficient cathode catalysts for Li-O2 batteries. J. Mater. Chem. A 2018, 6, 19075–19084.

[62]

Lee, J. Y.; Park, G. D.; Kim, J. H.; Hong, J. H.; Kang, Y. C. Synthesis of three-dimensional Co/CoO/N-doped carbon nanotube composite for zinc air battery. Int. J. Energy Res. 2021, 45, 16091–16101.

[63]

Liu, J.; Li, Z. Y.; Huo, X. G.; Li, J. L. Nanosphere-rod-like Co3O4 as high performance cathode material for aluminium ion batteries. J. Power Sources 2019, 422, 49–56.

[64]

Xing, W.; Li, X. C.; Cai, T. H.; Zhang, Y.; Bai, P.; Xu, J.; Hu, H.; Wu, M. B.; Xue, Q. Z.; Zhao, Y. et al. Layered double hydroxides derived NiCo-sulfide as a cathode material for aluminum ion batteries. Electrochim. Acta 2020, 344, 136174.

[65]

Liu, C. L.; Zhang, G.; Yu, L.; Qu, J. H.; Liu, H. J. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution. Small 2018, 14, 1800421.

[66]

Luo, B.; Song, R.; Geng, J. F.; Liu, X. H.; Jing, D. W.; Wang, M. L.; Cheng, C. Towards the prominent cocatalytic effect of ultra-small CoP particles anchored on g-C3N4 nanosheets for visible light driven photocatalytic H2 production. Appl. Catal. B Environ. 2019, 256, 117819.

[67]

Sun, D. S.; Zhou, T. Y.; Che, G. B.; Liu, C. B. A synergism between Schottky junction and interfacial P–Ni bond for improving the hydrogen evolution of 2D/2D NiS/phosphorus-doped g-C3N4 photocatalyst. Appl. Surf. Sci. 2022, 578, 152004.

File
12274_2022_5352_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 October 2022
Revised: 15 November 2022
Accepted: 23 November 2022
Published: 05 March 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 52072197 and 52102272), Taishan Scholar Young Talent Program (No. tsqn201909114), the Natural Science Foundation of Shandong Province (No. ZR2021QE063), Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (No. 2019KJC004), Major Scientific and Technological Innovation Project (No. 2019JZZY020405), Outstanding Youth Foundation of Shandong Province, China (No. ZR2019JQ14), Major Basic Research Program of the Natural Science Foundation of Shandong Province (No. ZR2020ZD09) and Talent Foundation funded by Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering (No. STHGYX2213).

Return