Journal Home > Volume 16 , Issue 5

A series of molecules with oligophenylene backbone, thiolate anchoring group, and pentafluoro-λ6-sulfanyl (−SF5) tail group was synthesized and used as precursors to form self-assembled monolayers (SAMs) on Au(111) substrates. The resulting SAMs feature dense molecular packing, upright molecular orientation, and chemically homogeneous SAM-ambient interface, comprised entirely of the −SF5 moieties. These SAMs exhibit exceptional wetting and electrostatic properties, showing advancing water contact angles up to 103° and work function values up to 5.96 eV—probably the highest values reported for any aromatic monolayers on gold. They also feature a comparably low value of the tunnelling decay coefficient (0.38 ± 0.07 Å−1), typical of oligophenylene backbone, which is not affected by the introduction of the −SF5 group. The latter also hardly affects the current densities at a specific bias compared to analogous monolayers with other electronegative tail groups. The superior electrostatic and good charge transport properties of the designed, SF5-terminated SAMs make them potentially useful for interface engineering in organic electronics and photovoltaics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aromatic self-assembled monolayers with pentafluoro-λ6-sulfanyl (−SF5) termination: Molecular organization and charge transport properties

Show Author's information Yangbiao Liu1,§Marc Zeplichal2,§Sonja Katzbach2Adrian Wiesner2Saunak Das1Andreas Terfort2( )Michael Zharnikov1( )
Angewandte Physikalische Chemie, Universität Heidelberg, Im Neuenheimer Feld 253, D-69120 Heidelberg, Germany
Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität Frankfurt, Max-von-Laue-Straße 7, D-60438 Frankfurt am Main, Germany

§ Yangbiao Liu and Marc Zeplichal contributed equally to this work.

Abstract

A series of molecules with oligophenylene backbone, thiolate anchoring group, and pentafluoro-λ6-sulfanyl (−SF5) tail group was synthesized and used as precursors to form self-assembled monolayers (SAMs) on Au(111) substrates. The resulting SAMs feature dense molecular packing, upright molecular orientation, and chemically homogeneous SAM-ambient interface, comprised entirely of the −SF5 moieties. These SAMs exhibit exceptional wetting and electrostatic properties, showing advancing water contact angles up to 103° and work function values up to 5.96 eV—probably the highest values reported for any aromatic monolayers on gold. They also feature a comparably low value of the tunnelling decay coefficient (0.38 ± 0.07 Å−1), typical of oligophenylene backbone, which is not affected by the introduction of the −SF5 group. The latter also hardly affects the current densities at a specific bias compared to analogous monolayers with other electronegative tail groups. The superior electrostatic and good charge transport properties of the designed, SF5-terminated SAMs make them potentially useful for interface engineering in organic electronics and photovoltaics.

References(94)

[1]

Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.

[2]

Kind, M.; Wöll, C. Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Prog. Surf. Sci. 2009, 84, 230–278.

[3]

Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96, 1533–1554.

[4]

Abbott, N. L.; Folkers, J. P.; Whitesides, G. M. Manipulation of the wettability of surfaces on the 0.1- to 1-micrometer scale through micromachining and molecular self-assembly. Science 1992, 257, 1380–1382.

[5]

Neupane, S.; Rivas, N. A.; Losada-Pérez, P.; D'Haen, J.; Noei, H.; Keller, T. F.; Stierle, A.; Rudolph, M.; Terfort, A.; Bertran, O. et al. A model study on controlling dealloying corrosion attack by lateral modification of surfactant inhibitors. npj Mater. Degrad. 2021, 5, 29.

[6]

Krakert, S.; Ballav, N.; Zharnikov, M.; Terfort, A. Adjustment of the bioresistivity by electron irradiation: Self-assembled monolayers of oligo(ethyleneglycol)-terminated alkanethiols with embedded cleavable group. Phys. Chem. Chem. Phys. 2010, 12, 507–515.

[7]

Lee, H. J.; Jamison, A. C.; Lee, T. R. Surface dipoles: A growing body of evidence supports their impact and importance. Acc. Chem. Res. 2015, 48, 3007–3015.

[8]

Campbell, I. H.; Rubin, S.; Zawodzinski, T. A.; Kress, J. D.; Martin, R. L.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P. Controlling Schottky energy barriers in organic electronic devices using self-assembled monolayers. Phys. Rev. B 1996, 54, R14321–R14324.

[9]

Koch, N. Energy levels at interfaces between metals and conjugated organic molecules. J. Phys. :Condens. Matter 2008, 20, 184008.

[10]

Casalini, S.; Bortolotti, C. A.; Leonardi, F.; Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 2017, 46, 40–71.

[11]

Liu, D. Q.; Miao, Q. Recent progress in interface engineering of organic thin film transistors with self-assembled monolayers. Mater. Chem. Front. 2018, 2, 11–21.

[12]

Borchert, J. W.; Peng, B. Y.; Letzkus, F.; Burghartz, J. N.; Chan, P. K. L.; Zojer, K.; Ludwigs, S.; Klauk, H. Small contact resistance and high-frequency operation of flexible low-voltage inverted coplanar organic transistors. Nat. Commun. 2019, 10, 1119.

[13]

Petritz, A.; Krammer, M.; Sauter, E.; Gärtner, M.; Nascimbeni, G.; Schrode, B.; Fian, A.; Gold, H.; Cojocaru, A.; Karner-Petritz, E. et al. Embedded dipole self-assembled monolayers for contact resistance tuning in p-type and n-type organic thin film transistors and flexible electronic circuits. Adv. Funct. Mater. 2018, 28, 1804462.

[14]

Bock, C.; Pham, D. V.; Kunze, U.; Käfer, D.; Witte, G.; Wöll, C. Improved morphology and charge carrier injection in pentacene field-effect transistors with thiol-treated electrodes. J. Appl. Phys. 2006, 100, 114517.

[15]

Kline, R. J.; Hudson, S. D.; Zhang, X. R.; Gundlach, D. J.; Moad, A. J.; Jurchescu, O. D.; Jackson, T. N.; Subramanian, S.; Anthony, J. E.; Toney, M. F. et al. Controlling the microstructure of solution-processable small molecules in thin-film transistors through substrate chemistry. Chem. Mater. 2011, 23, 1194–1203.

[16]

Kim, J.; Rim, Y. S.; Liu, Y. S.; Serino, A. C.; Thomas, J. C.; Chen, H. J.; Yang, Y.; Weiss, P. S. Interface control in organic electronics using mixed monolayers of carboranethiol isomers. Nano Lett. 2014, 14, 2946–2951.

[17]

Abu-Husein, T.; Schuster, S.; Egger, D. A.; Kind, M.; Santowski, T.; Wiesner, A.; Chiechi, R.; Zojer, E.; Terfort, A.; Zharnikov, M. The effects of embedded dipoles in aromatic self-assembled monolayers. Adv. Funct. Mater. 2015, 25, 3943–3957.

[18]

Zojer, E.; Terfort, A.; Zharnikov, M. Concept of embedded dipoles as versatile tool for surface engineering. Acc. Chem. Res. 2022, 55, 1857–1867.

[19]

De Boer, B.; Hadipour, A.; Mandoc, M. M.; Van Woudenbergh, T.; Blom, P. W. M. Tuning of metal work functions with self-assembled monolayers. Adv. Mater. 2005, 17, 621–625.

[20]

Hamadani, B. H.; Corley, D. A.; Ciszek, J. W.; Tour, J. M.; Natelson, D. Controlling charge injection in organic field-effect transistors using self-assembled monolayers. Nano Lett. 2006, 6, 1303–1306.

[21]

Heimel, G.; Romaner, L.; Zojer, E.; Bredas, J. L. The interface energetics of self-assembled monolayers on metals. Acc. Chem. Res. 2008, 41, 721–729.

[22]

Lange, I.; Reiter, S.; Pätzel, M.; Zykov, A.; Nefedov, A.; Hildebrandt, J.; Hecht, S.; Kowarik, S.; Wöll, C.; Heimel, G. et al. Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers. Adv. Funct. Mater. 2014, 24, 7014–7024.

[23]

Asyuda, A.; Wiesner, A.; Wan, X. L.; Terfort, A.; Zharnikov, M. Charge transport properties of single-component and binary aromatic self-assembled monolayers with methyl and trifluoromethyl tail groups. J. Phys. Chem. C 2020, 124, 24837–24848.

[24]

Gautam, P.; Yu, C. P.; Zhang, G. X.; Hillier, V. E.; Chan, J. M. W. Pulling with the pentafluorosulfanyl acceptor in push–pull dyes. J. Org. Chem. 2017, 82, 11008–11020.

[25]

Winter, R.; Nixon, P. G.; Gard, G. L.; Radford, D. H.; Holcomb, N. R.; Grainger, D. W. New SF5-long chain carbon systems. J. Fluorine Chem. 2001, 107, 23–30.

[26]

Winter, R.; Nixon, P. G.; Gard, G. L.; Graham, D. J.; Castner, D. G.; Holcomb, N. R.; Grainger, D. W. Self-assembled organic monolayers terminated in perfluoroalkyl pentafluoro-λ6-sulfanyl (SF5) chemistry on gold. Langmuir 2004, 20, 5776–5781.

[27]

Laibinis, P. E.; Whitesides, G. M. ω-Terminated alkanethiolate monolayers on surfaces of copper, silver, and gold have similar wettabilities. J. Am. Chem. Soc. 1992, 114, 1990–1995.

[28]

Pflaum, J.; Bracco, G.; Schreiber, F.; Colorado, Jr. R.; Shmakova, O. E.; Lee, T. R.; Scoles, G.; Kahn, A. Structure and electronic properties of CH3- and CF3-terminated alkanethiol monolayers on Au(111): A scanning tunneling microscopy, surface X-ray and helium scattering study. Surf. Sci. 2002, 498, 89–104.

[29]

Akkerman, H. B.; De Boer, B. Electrical conduction through single molecules and self-assembled monolayers. J. Phys. Condens. Matter 2008, 20, 013001.

[30]
Branchi, B.; Simeone, F. C.; Rampi, M. A. Active and non-active large-area metal-molecules-metal junctions. In Unimolecular and Supramolecular Electronics II. Metzger, R. M. , Ed.; Springer: Berlin, 2012; pp 85–119.
[31]

Xie, Z. T.; Bâldea, I.; Frisbie, C. D. Determination of energy-level alignment in molecular tunnel junctions by transport and spectroscopy: Self-consistency for the case of oligophenylene thiols and dithiols on Ag, Au, and Pt electrodes. J. Am. Chem. Soc. 2019, 141, 3670–3681.

[32]

Liao, K. C.; Bowers, C. M.; Yoon, H. J.; Whitesides, G. M. Fluorination, and tunneling across molecular junctions. J. Am. Chem. Soc. 2015, 137, 3852–3858.

[33]

Wang, D. D.; Fracasso, D.; Nurbawono, A.; Annadata, H. V.; Sangeeth, C. S. S.; Yuan, L.; Nijhuis, C. A. Tuning the tunneling rate and dielectric response of SAM-based junctions via a single polarizable atom. Adv. Mater. 2015, 27, 6689–6695.

[34]

Kong, G. D.; Kim, M.; Jang, H. J.; Liao, K. C.; Yoon, H. J. Influence of halogen substitutions on rates of charge tunneling across SAM-based large-area junctions. Phys. Chem. Chem. Phys. 2015, 17, 13804–13807.

[35]

Chen, X. P.; Annadata, H. V.; Kretz, B.; Zharnikov, M.; Chi, X.; Yu, X. J.; Egger, D. A.; Nijhuis, C. A. Interplay of collective electrostatic effects and level alignment dictates the tunneling rates across halogenated aromatic monolayer junctions. J. Phys. Chem. Lett. 2019, 10, 4142–4147.

[36]

Asyuda, A.; Wan, X. L.; Zharnikov, M. Binary aromatic self-assembled monolayers: Electrostatic properties and charge tunneling rates across the molecular framework. Phys. Chem. Chem. Phys. 2020, 22, 10957–10967.

[37]

Chen, X. P.; Kretz, B.; Adoah, F.; Nickle, C.; Chi, X.; Yu, X. J.; Del Barco, E.; Thompson, D.; Egger, D. A.; Nijhuis, C. A. A single atom change turns insulating saturated wires into molecular conductors. Nat. Commun. 2021, 12, 3432.

[38]
Nefedov, A. Wöll, C. Advanced applications of NEXAFS spectroscopy for functionalized surfaces. In Surface Science Techniques. Bracco, G.; Holst, B. , Eds.; Springer: Berlin, 2013; pp 277–303.
[39]

Gärtner, M.; Sauter, E.; Nascimbeni, G.; Petritz, A.; Wiesner, A.; Kind, M.; Abu-Husein, T.; Bolte, M.; Stadlober, B.; Zojer, E. et al. Understanding the properties of tailor-made self-assembled monolayers with embedded dipole moments for interface engineering. J. Phys. Chem. C 2018, 122, 28757–28774.

[40]
Moulder, J. F.; Stickle, W. E.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy. Chastian, J. , Ed.; Perkin-Elmer Corp: Minnesota, 1992.
[41]
Stöhr, J. NEXAFS Spectroscopy; Springer-Verlag: Berlin, 1992.
[42]

Batson, P. E. Carbon-1s near-edge-absorption fine structure in graphite. Phys. Rev. B 1993, 48, 2608–2610.

[43]

Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020, 152, 224108.

[44]

Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824.

[45]

Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100.

[46]

Weigend, F. Accurate coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065.

[47]

Cabarcos, O. M.; Schuster, S.; Hehn, I.; Zhang, P. P.; Maitani, M. M.; Sullivan, N.; Giguère, J. B.; Morin, J. F.; Weiss, P. S.; Zojer, E. et al. Effects of embedded dipole layers on electrostatic properties of alkanethiolate self-assembled monolayers. J. Phys. Chem. C 2017, 121, 15815–15830.

[48]

Querebillo, C. J.; Terfort, A.; Allara, D. L.; Zharnikov, M. Static conductance of nitrile-substituted oligophenylene and oligo(phenylene ethynylene) self-assembled monolayers studied by the mercury-drop method. J. Phys. Chem. C 2013, 117, 25556–25561.

[49]

Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem. 2008, 120, 148–150.

[50]

Reus, W. F.; Nijhuis, C. A.; Barber, J. R.; Thuo, M. M.; Tricard, S.; Whitesides, G. M. Statistical tools for analyzing measurements of charge transport. J. Phys. Chem. C 2012, 116, 6714–6733.

[51]

Wiesner, A.; Katzbach, S.; Bebej, D.; Dettenhöfer, M.; Zharnikov, M.; Terfort, A. The 3,4-dimethoxybenzyl group as solubilizing protective group for the in situ deprotection/deposition of extended aromatic thiolate monolayers. Nano Res. 2023, 16, 1695–1702.

[52]

Iakobson, G.; Du, J. Y.; Slawin, A. M. Z.; Beier, P. Pyridine-promoted dediazoniation of aryldiazonium tetrafluoroborates: Application to the synthesis of SF5-substituted phenylboronic esters and iodobenzenes. Beilstein J. Org. Chem. 2015, 11, 1494–1502.

[53]

Zharnikov, M. High-resolution X-ray photoelectron spectroscopy in studies of self-assembled organic monolayers. J. Electron Spectrosc. Relat. Phenom. 2010, 178–179, 380–393.

[54]

Tai, Y.; Shaporenko, A.; Rong, H. T.; Buck, M.; Eck, W.; Grunze, M.; Zharnikov, M. Fabrication of thiol-terminated surfaces using aromatic self-assembled monolayers. J. Phys. Chem. B 2004, 108, 16806–16810.

[55]

Frey, S.; Stadler, V.; Heister, K.; Eck, W.; Zharnikov, M.; Grunze, M.; Zeysing, B.; Terfort, A. Structure of thioaromatic self-assembled monolayers on gold and silver. Langmuir 2001, 17, 2408–2415.

[56]

Shaporenko, A.; Heister, K.; Ulman, A.; Grunze, M.; Zharnikov, M. The effect of halogen substitution in self-assembled monolayers of 4-mercaptobiphenyls on noble metal substrates. J. Phys. Chem. B 2005, 109, 4096–4103.

[57]

Thome, J.; Himmelhaus, M.; Zharnikov, M.; Grunze, M. Increased lateral density in alkanethiolate films on gold by mercury adsorption. Langmuir 1998, 14, 7435–7449.

[58]

Chesneau, F.; Schüpbach, B.; Szelągowska-Kunstman, K.; Ballav, N.; Cyganik, P.; Terfort, A.; Zharnikov, M. Self-assembled monolayers of perfluoroterphenyl-substituted alkanethiols: Specific characteristics and odd-even effects. Phys. Chem. Chem. Phys. 2010, 12, 12123–12127.

[59]

Asyuda, A.; Das, S.; Zharnikov, M. Thermal stability of alkanethiolate and aromatic thiolate self-assembled monolayers on Au(111): An X-ray photoelectron spectroscopy study. J. Phys. Chem. C 2021, 125, 21754–21763.

[60]

Lamont, C. L. A.; Wilkes, J. Attenuation length of electrons in self-assembled monolayers of n-alkanethiols on gold. Langmuir 1999, 15, 2037–2042.

[61]

Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–257.

[62]
Ratner, B. D.; Castner, D. G. Electron spectroscopy for chemical analysis. In Surface AnalysisThe Principal Techniques; 2nd ed. Vickerman, J. C.; Gilmore, I. S. , Eds.; Wiley: Hoboken, 2009.
[63]

Kondoh, H.; Iwasaki, M.; Shimada, T.; Amemiya, K.; Yokoyama, T.; Ohta, T.; Shimomura, M.; Kono, S. Adsorption of thiolates to singly coordinated sites on Au(111) evidenced by photoelectron diffraction. Phys. Rev. Lett. 2003, 90, 066102.

[64]

Roper, M. G.; Skegg, M. P.; Fisher, C. J.; Lee, J. J.; Dhanak, V. R.; Woodruff, D. P.; Jones, R. G. Atop adsorption site of sulphur head groups in gold-thiolate self-assembled monolayers. Chem. Phys. Lett. 2004, 389, 87–91.

[65]

Azzam, W.; Fuxen, C.; Birkner, A.; Rong, H. T.; Buck, M.; Wöll, C. Coexistence of different structural phases in thioaromatic monolayers on Au(111). Langmuir 2003, 19, 4958–4968.

[66]

Horsley, J. A.; Stöhr, J.; Hitchcock, A. P.; Newbury, D. C.; Johnson, A. L.; Sette, F. Resonances in the K shell excitation spectra of benzene and pyridine: Gas phase, solid, and chemisorbed states. J. Chem. Phys. 1985, 83, 6099–6107.

[67]

Yokoyama, T.; Seki, K.; Morisada, I.; Edamatsu, K.; Ohta, T. X-ray absorption spectra of poly-p-phenylenes and polyacenes: Localization of orbitals. Phys. Scr. 1990, 41, 189–192.

[68]

Zharnikov, M.; Küller, A.; Shaporenko, A.; Schmidt, E.; Eck, W. Aromatic self-assembled monolayers on hydrogenated silicon. Langmuir 2003, 19, 4682–4687.

[69]

Rong, H. T.; Frey, S.; Yang, Y. J.; Zharnikov, M.; Buck, M.; Wühn, M.; Wöll, C.; Helmchen, G. On the importance of the headgroup substrate bond in thiol monolayers: A study of biphenyl-based thiols on gold and silver. Langmuir 2001, 17, 1582–1593.

[70]

Ballav, N.; Schüpbach, B.; Dethloff, O.; Feulner, P.; Terfort, A.; Zharnikov, M. Direct probing molecular twist and tilt in aromatic self-assembled monolayers. J. Am. Chem. Soc. 2007, 129, 15416–15417.

[71]

Trotter, J. The crystal and molecular structure of biphenyl. Acta Cryst. 1961, 14, 1135–1140.

[72]

Hargreaves, A.; Rizvi, S. H. The crystal and molecular structure of biphenyl. Acta Cryst. 1962, 15, 365–373.

[73]

Charbonneau, G. P.; Delugeard, Y. Structural transition in polyphenyls. III. crystal structure of biphenyl at 110 K. Acta Cryst. 1976, B32, 1420–1423.

[74]

Kang, J. F.; Ulman, A.; Liao, S.; Jordan, R.; Yang, G. H.; Liu, G. Y. Self-assembled rigid monolayers of 4’-substituted-4-mercaptobiphenyls on gold and silver surfaces. Langmuir 2001, 17, 95–106.

[75]

Greenler, R. G. Infrared study of adsorbed molecules on metal surfaces by reflection techniques. J. Chem. Phys. 1966, 44, 310–315.

[76]

Pearce, H. A.; Sheppard, N. Possible importance of a “metal-surface selection rule” in the interpretation of the infrared spectra of molecules adsorbed on particulate metals; infrared spectra from ethylene chemisorbed on silica-supported metal catalysts. Surf. Sci. 1976, 59, 205–217.

[77]

Asyuda, A.; Gärtner, M.; Wan, X. L.; Burkhart, I.; Saßmannshausen, T.; Terfort, A.; Zharnikov, M. Self-assembled monolayers with embedded dipole moments for work function engineering of oxide substrates. J. Phys. Chem. C 2020, 124, 8775–8785.

[78]

Benneckendorf, F. S.; Hillebrandt, S.; Ullrich, F.; Rohnacher, V.; Hietzschold, S.; Jänsch, D.; Freudenberg, J.; Beck, S.; Mankel, E.; Jaegermann, W. et al. Structure–property relationship of phenylene-based self-assembled monolayers for record low work function of indium tin oxide. J. Phys. Chem. Lett. 2018, 9, 3731–3737.

[79]

Levstik, A.; Filipič, C.; Levstik, I. Dielectric properties of biphenyl. J. Phys. :Condens. Matter, 1990, 2, 3031–3033.

[80]

Alloway, D. M.; Hofmann, M.; Smith, D. L.; Gruhn, N. E.; Graham, A. L.; Colorado, Jr. R.; Wysocki, V. H.; Lee, T. R.; Lee, P. A.; Armstrong, N. R. Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols. J. Phys. Chem. B 2003, 107, 11690–11699.

[81]

Boudinet, D.; Benwadih, M.; Qi, Y. B.; Altazin, S.; Verilhac, J. M.; Kroger, M.; Serbutoviez, C.; Gwoziecki, R.; Coppard, R.; Le Blevennec, G. et al. Modification of gold source and drain electrodes by self-assembled monolayer in staggered n- and p-channel organic thin film transistors. Org. Electron. 2010, 11, 227–237.

[82]

Ford, W. E.; Gao, D. Q.; Knorr, N.; Wirtz, R.; Scholz, F.; Karipidou, Z.; Ogasawara, K.; Rosselli, S.; Rodin, V.; Nelles, G. et al. Organic dipole layers for ultralow work function electrodes. ACS Nano 2014, 8, 9173–9180.

[83]

Zojer, E.; Taucher, T. C.; Hofmann, O. T. The impact of dipolar layers on the electronic properties of organic/inorganic hybrid interfaces. Adv. Mater. Interfaces 2019, 6, 1900581.

[84]

Jeong, H.; Kim, D.; Xiang, D.; Lee, T. High-yield functional molecular electronic devices. ACS Nano 2017, 11, 6511–6548.

[85]

Metzger, R. M. Unimolecular electronics. Chem. Rev. 2015, 115, 5056–5115.

[86]

Vilan, A.; Aswal, D.; Cahen, D. Large-area, ensemble molecular electronics: Motivation and challenges. Chem. Rev. 2017, 117, 4248–4286.

[87]

Weiss, E. A.; Chiechi, R. C.; Kaufman, G. K.; Kriebel, J. K.; Li, Z. F.; Duati, M.; Rampi, M. A.; Whitesides, G. M. Influence of defects on the electrical characteristics of mercury-drop junctions: Self-assembled monolayers of n-alkanethiolates on rough and smooth silver. J. Am. Chem. Soc. 2007, 129, 4336–4349.

[88]

Bowers, C. M.; Liao, K. C.; Yoon, H. J.; Rappoport, D.; Baghbanzadeh, M.; Simeone, F. C.; Whitesides, G. M. Introducing ionic and/or hydrogen bonds into the SAM//Ga2O3 top-interface of AgTS/S(CH2)nT//Ga2O3/EGaIn junctions. Nano Lett. 2014, 14, 3521–3526.

[89]

Wold, D. J.; Haag, R.; Rampi, M. A.; Frisbie, C. D. Distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: Unsaturated versus saturated molecular junctions. J. Phys. Chem. B 2002, 106, 2813–2816.

[90]

Tivanski, A. V.; He, Y. F.; Borguet, E.; Liu, H. Y.; Walker, G. C.; Waldeck, D. H. Conjugated thiol linker for enhanced electrical conduction of gold-molecule contacts. J. Phys. Chem. B 2005, 109, 5398–5402.

[91]

Karthäuser, S. Control of molecule-based transport for future molecular devices. J. Phys. :Condens. Matter 2011, 23, 013001.

[92]

Yildirim, C.; Sauter, E.; Terfort, A.; Zharnikov, M. Effect of electron irradiation on electric transport properties of aromatic self-assembled monolayers. J. Phys. Chem. C 2017, 121, 7355–7364.

[93]

Kim, B.; Choi, S. H.; Zhu, X. Y.; Frisbie, C. D. Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: Effect of surface linking group and metal work function. J. Am. Chem. Soc. 2011, 133, 19864–19877.

[94]

Zharnikov, M. Femtosecond charge transfer dynamics in monomolecular films in the context of molecular electronics. Acc. Chem. Res. 2020, 53, 2975–2984.

File
12274_2022_5350_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 September 2022
Revised: 18 November 2022
Accepted: 20 November 2022
Published: 04 February 2023
Issue date: May 2023

Copyright

© The author(s) 2022

Acknowledgements

Acknowledgements

We thank the Helmholtz Zentrum Berlin (HZM) for the allocation of synchrotron radiation beamtime at BESSY II and financial support. We thank Dr. A. Asyuda for assistance at the initial stages of this project and Dr. M. Brzhezinskaya (HZM) for the assistance during the measurements at BESSY II. Y. L. thanks the China Scholarship Council (CSC) for the financial support. S. D. and M. Z. acknowledge the financial support by the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG)) via grant ZH 63/39-1.

Rights and permissions

Copyright: © 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return