Journal Home > Volume 16 , Issue 5

Bacterial infection, biofilm formation, and immune dysfunction are common triggers and aggravators in periodontitis, which render periodontal restoration challenging. Thus, a strategy with antibacterial, anti-inflammatory, and immunoregulatory capacities has great promise in the clinical practice of periodontitis. Herein, carvacrol (CA)-based near-infrared (NIR) light-responsive nano-drug delivery system is developed for the first time. The system consists of upconversion nanoparticles (UCNPs, which upconvert 808 nm NIR to blue light), mesoporous silica (mSiO2, the carrier channel), and hydrophobic CA (blue light response properties). Under the irradiation of 808 nm NIR, owing to the synergy of CA and upconverted blue light, the UCNPs@mSiO2-CA (UCMCs) exhibit the properties of specific anti-bacteria (including anaerobic bacteria), anti-inflammation, and immunomodulation. Notably, high-throughput sequencing results exhibit that many classic inflammatory immune-related signaling pathways, including the MAPK signaling pathway, tumor necrosis factor (TNF) signaling pathway, and IL-17 signaling pathway, are enriched to remodel the immune microenvironment. Additionally, UCMCs with NIR irradiation accelerate periodontal restoration and serve as promising non-invasive management of periodontitis. Altogether, this study verifies the feasibility of herbal monomer combined with light-responsive in situ nano-drug delivery system and provides a more effective and reliable strategy for various potential applications of deep tissue diseases.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carvacrol combined with NIR light-responsive nano-drug delivery system with specific anti-bacteria, anti-inflammation, and immunomodulation for periodontitis

Show Author's information Daorun Hu1,2,§Congkai Zhang3,§Chao Sun2Haijing Bai2Jialiang Xie2,4Yawen Gu2Mengyuan Li2Junkai Jiang2Aiping Le3( )Jiaxuan Qiu1( )Xiaolei Wang2,4( )
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330088, China
Department of Transfusion Medicine, The First Affiliated Hospital of Nanchang University; Key Laboratory of Jiangxi Province for Transfusion Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
College of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330088, China

§ Daorun Hu and Congkai Zhang contributed equally to this work.

Abstract

Bacterial infection, biofilm formation, and immune dysfunction are common triggers and aggravators in periodontitis, which render periodontal restoration challenging. Thus, a strategy with antibacterial, anti-inflammatory, and immunoregulatory capacities has great promise in the clinical practice of periodontitis. Herein, carvacrol (CA)-based near-infrared (NIR) light-responsive nano-drug delivery system is developed for the first time. The system consists of upconversion nanoparticles (UCNPs, which upconvert 808 nm NIR to blue light), mesoporous silica (mSiO2, the carrier channel), and hydrophobic CA (blue light response properties). Under the irradiation of 808 nm NIR, owing to the synergy of CA and upconverted blue light, the UCNPs@mSiO2-CA (UCMCs) exhibit the properties of specific anti-bacteria (including anaerobic bacteria), anti-inflammation, and immunomodulation. Notably, high-throughput sequencing results exhibit that many classic inflammatory immune-related signaling pathways, including the MAPK signaling pathway, tumor necrosis factor (TNF) signaling pathway, and IL-17 signaling pathway, are enriched to remodel the immune microenvironment. Additionally, UCMCs with NIR irradiation accelerate periodontal restoration and serve as promising non-invasive management of periodontitis. Altogether, this study verifies the feasibility of herbal monomer combined with light-responsive in situ nano-drug delivery system and provides a more effective and reliable strategy for various potential applications of deep tissue diseases.

Keywords: drug delivery, near-infrared light, anti-bacteria, periodontitis, upconversion nanoparticle

References(63)

[1]

Peres, M. A.; Macpherson, L. M. D.; Weyant, R. J.; Daly, B.; Venturelli, R.; Mathur, M. R.; Listl, S.; Celeste, R. K.; Guarnizo-Herreño, C. C.; Kearns, C. et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260.

[2]

Kinane, D. F.; Stathopoulou, P. G.; Papapanou, P. N. Periodontal diseases. Nat. Rev. Dis. Primers 2017, 3, 17038.

[3]

Lamont, R. J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759.

[4]

Belstrøm, D.; Constancias, F.; Drautz-Moses, D. I.; Schuster, S. C.; Veleba, M.; Mahe, F.; Givskov, M. Periodontitis associates with species-specific gene expression of the oral microbiota. npj Biofilms Microbiomes 2021, 7, 76.

[5]

Czesnikiewicz-Guzik, M.; D'Aiuto, F.; Deanfield, J. E. Understanding residual inflammatory risk sheds new light on the clinical importance of periodontitis in cardiovascular disease. Eur. Heart J. 2020, 41, 818–819.

[6]

Michaud, D. S.; Lu, J. Y.; Peacock-Villada, A. Y.; Barber, J. R.; Joshu, C. E.; Prizment, A. E.; Beck, J. D.; Offenbacher, S.; Platz, E. A. Periodontal disease assessed using clinical dental measurements and cancer risk in the ARIC study. J. Natl. Cancer Inst. 2018, 110, 843–854.

[7]

Eke, P. I.; Borgnakke, W. S.; Genco, R. J. Recent epidemiologic trends in periodontitis in the USA. Periodontol 2000 2020, 82, 257–267.

[8]

Vergnes, J. N.; Canceill, T.; Monsarrat, P. Intensive periodontal therapy and type 2 diabetes. Lancet Diabetes Endocrinol. 2019, 7, 174–175.

[9]

Kitamoto, S.; Nagao-Kitamoto, H.; Jiao, Y. Z.; Gillilland III, M. G.; Hayashi, A.; Imai, J.; Sugihara, K.; Miyoshi, M.; Brazil, J. C.; Kuffa, P. et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis. Cell 2020, 182, 447–462.e14.

[10]

Hajishengallis, G.; Chavakis, T. Local and systemic mechanisms linking periodontal disease and inflammatory comorbidities. Nat. Rev. Immunol. 2021, 21, 426–440.

[11]

Nakajima, M.; Tanner, E. E. L.; Nakajima, N.; Ibsen, K. N.; Mitragotri, S. Topical treatment of periodontitis using an iongel. Biomaterials 2021, 276, 121069.

[12]

Zhao, Z. M.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell 2020, 181, 151–167.

[13]

Ahamad, N.; Kar, A.; Mehta, S.; Dewani, M.; Ravichandran, V.; Bhardwaj, P.; Sharma, S.; Banerjee, R. Immunomodulatory nanosystems for treating inflammatory diseases. Biomaterials 2021, 274, 120875.

[14]

Li, C. H.; Landis, R. F.; Makabenta, J. M.; Nabawy, A.; Tronchet, T.; Archambault, D.; Liu, Y. C.; Huang, R.; Golan, M.; Cui, W. et al. Nanotherapeutics using all-natural materials. Effective treatment of wound biofilm infections using crosslinked nanoemulsions. Mater. Horiz. 2021, 8, 1776–1782.

[15]

Landis, R. F.; Gupta, A.; Lee, Y. W.; Wang, L. S.; Golba, B.; Couillaud, B.; Ridolfo, R.; Das, R.; Rotello, V. M. Cross-linked polymer-stabilized nanocomposites for the treatment of bacterial biofilms. ACS Nano 2017, 11, 946–952.

[16]

Kachur, K.; Suntres, Z. The antibacterial properties of phenolic isomers, carvacrol and thymol. Crit. Rev. Food Sci. Nutr. 2020, 60, 3042–3053.

[17]

Liu, T. H.; Feng, C. Q.; Li, Z. F.; Gu, Z. B.; Ban, X. F.; Hong, Y.; Cheng, L.; Li, C. M. Efficient formation of carvacrol inclusion complexes during β-cyclodextrin glycosyltransferase-catalyzed cyclodextrin synthesis. Food Control 2021, 130, 108296.

[18]

Lu, M.; Wang, S.; Wang, T.; Hu, S. S.; Bhayana, B.; Ishii, M.; Kong, Y. F.; Cai, Y. C.; Dai, T. H.; Cui, W. G. et al. Bacteria-specific phototoxic reactions triggered by blue light and phytochemical carvacrol. Sci. Transl. Med. 2021, 13, eaba3571.

[19]

Li, Y. L.; Wu, M. X. Reversal of polymicrobial biofilm tolerance to ciprofloxacin by blue light plus carvacrol. Microorganisms 2021, 9, 2074.

[20]

Wang, S.; Wong, K. I.; Li, Y. L.; Ishii, M.; Li, X.; Wei, L.; Lu, M.; Wu, M. X. Blue light potentiates safety and bactericidal activity of p-toluquinone. J. Photochem. Photobiol. B 2022, 230, 112427.

[21]

Li, Y. L.; Wu, M. X. Visualization and elimination of polymicrobial biofilms by a combination of ALA-carvacrol-blue light. J. Photochem. Photobiol. B 2022, 234, 112525.

[22]

Leanse, L. G.; Dos Anjos, C.; Mushtaq, S.; Dai, T. H. Antimicrobial blue light: A ‘Magic Bullet’ for the 21st century and beyond? Adv. Drug Delivery Rev. 2022, 180, 114057.

[23]

Wu, J. L.; Wang, M. Y.; Yang, X. P.; Yi, C. W.; Jiang, J.; Yu, Y. H.; Ye, H. F. A non-invasive far-red light-induced split-Cre recombinase system for controllable genome engineering in mice. Nat. Commun. 2020, 11, 3708.

[24]

Zheng, X.; Kankala, R. K.; Liu, C. G.; Wen, Y.; Wang, S. B.; Chen, A. Z.; Zhang, Y. Tailoring lanthanide upconversion luminescence through material designs and regulation strategies. Adv. Opt. Mater. 2022, 10, 2200167.

[25]

Teh, D. B. L.; Bansal, A.; Chai, C.; Toh, T. B.; Tucker, R. A. J.; Gammad, G. G. L.; Yeo, Y.; Lei, Z. D.; Zheng, X.; Yang, F. Y. et al. A flexi-PEGDA upconversion implant for wireless brain photodynamic therapy. Adv. Mater. 2020, 32, 2001459.

[26]

Liu, S. B.; Yan, L.; Huang, J. S.; Zhang, Q. Y.; Zhou, B. Controlling upconversion in emerging multilayer core–shell nanostructures: From fundamentals to frontier applications. Chem. Soc. Rev. 2022, 51, 1729–1765.

[27]

Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684.

[28]

Pearson, S.; Feng, J.; Del. Campo, A. Lighting the path: Light delivery strategies to activate photoresponsive biomaterials in vivo. Adv. Funct. Mater. 2021, 31, 2105989.

[29]

Ye, J.; Jiang, J. K.; Zhou, Z. R.; Weng, Z. Z.; Xu, Y. Y.; Liu, L. B.; Zhang, W.; Yang, Y. F.; Luo, J.; Wang, X. L. Near-infrared light and upconversion nanoparticle defined nitric oxide-based osteoporosis targeting therapy. ACS Nano 2021, 15, 13692–13702.

[30]

Liu, S. C.; Sun, Y.; Zhang, T.; Cao, L. T.; Zhong, Z. W.; Cheng, H. X.; Wang, Q. Q.; Qiu, Z.; Zhou, W. M.; Wang, X. L. Upconversion nanoparticles regulated drug & gas dual-effective nanoplatform for the targeting cooperated therapy of thrombus and anticoagulation. Bioact. Mater. 2022, 18, 91–103.

[31]

Yang, B. W.; Chen, Y.; Shi, J. L. Mesoporous silica/organosilica nanoparticles: Synthesis, biological effect and biomedical application. Mater. Sci. Eng. R 2019, 137, 66–105.

[32]

Noreen, S.; Maqbool, A.; Maqbool, I.; Shafique, A.; Khan, M. M.; Junejo, Y.; Ahmed, B.; Anwar, M.; Majeed, A.; Abbas, M. et al. Multifunctional mesoporous silica-based nanocomposites: Synthesis and biomedical applications. Mater. Chem. Phys. 2022, 285, 126132.

[33]

Lei, C.; Cao, Y. X.; Hosseinpour, S.; Gao, F.; Liu, J. Y.; Fu, J. Y.; Staples, R.; Ivanovski, S.; Xu, C. Hierarchical dual-porous hydroxyapatite doped dendritic mesoporous silica nanoparticles based scaffolds promote osteogenesis in vitro and in vivo. Nano Res. 2021, 14, 770–777.

[34]

Nguyen, H. C. B.; Adlanmerini, M.; Hauck, A. K.; Lazar, M. A. Dichotomous engagement of HDAC3 activity governs inflammatory responses. Nature 2020, 584, 286–290.

[35]

Rodriguez, A. E.; Ducker, G. S.; Billingham, L. K.; Martinez, C. A.; Mainolfi, N.; Suri, V.; Friedman, A.; Manfredi, M. G.; Weinberg, S. E.; Rabinowitz, J. D. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 2019, 29, 1003–1011.e4.

[36]

Tang, Y.; Huang, Q. X.; Zheng, D. W.; Chen, Y.; Ma, L.; Huang, C.; Zhang, X. Z. Engineered Bdellovibrio bacteriovorus: A countermeasure for biofilm-induced periodontitis. Mater. Today 2022, 53, 71–83.

[37]

Guo, J. W.; Li, D. D.; Tao, H.; Li, G.; Liu, R. F.; Dou, Y.; Jin, T. T.; Li, L. L.; Huang, J.; Hu, H. Y. et al. Cyclodextrin-derived intrinsically bioactive nanoparticles for treatment of acute and chronic inflammatory diseases. Adv. Mater. 2019, 31, 1904607.

[38]

Luo, G. F.; Chen, W. H.; Zeng, X.; Zhang, X. Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem. Soc. Rev. 2021, 50, 945–985.

[39]

Reyes, L. Porphyromonas gingivalis. Trends Microbiolbiol. 2021, 29, 376–377.

[40]

Kuboniwa, M.; Houser, J. R.; Hendrickson, E. L.; Wang, Q.; Alghamdi, S. A.; Sakanaka, A.; Miller, D. P.; Hutcherson, J. A.; Wang, T. S.; Beck, D. A. C. et al. Metabolic crosstalk regulates Porphyromonas gingivalis colonization and virulence during oral polymicrobial infection. Nat. Microbiol. 2017, 2, 1493–1499.

[41]

Mehta, B.; Luo, Y. M.; Xu, J. H.; Sammaritano, L.; Salmon, J.; Lockshin, M.; Goodman, S.; Ibrahim, S. Trends in maternal and fetal outcomes among pregnant women with systemic lupus erythematosus in the United States: A cross-sectional analysis. Ann. Intern. Med. 2019, 171, 164–171.

[42]

Wu, X. F.; Yang, M. Y.; Kim, J. S.; Wang, R.; Kim, G.; Ha, J.; Kim, H.; Cho, Y.; Nam, K. T.; Yoon, J. Reactivity differences enable ROS for selective ablation of bacteria. Angew. Chem., Int. Ed. 2022, 61, e202200808.

[43]

Xie, J. Y.; Zhou, M.; Qian, Y. X.; Cong, Z. H.; Chen, S.; Zhang, W. J.; Jiang, W. N.; Dai, C. Z.; Shao, N.; Ji, Z. M. et al. Addressing MRSA infection and antibacterial resistance with peptoid polymers. Nat. Commun. 2021, 12, 5898.

[44]

Cheng, H. X.; Liu, H. M.; Liu, Z. Q.; Xu, Z. Y.; Liu, X. R.; Jia, S.; He, C. N.; Liu, S. C.; Zhang, J.; Wang, X. L. Yellow responsive material based modification to reduce earphone induced Infection and hearing loss. Nano Res. 2022, 15, 6297–6305.

[45]

Tyers, M.; Wright, G. D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 2019, 17, 141–155.

[46]

Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm matrixome: Extracellular components in structured microbial communities. Trends Microbiol. 2020, 28, 668–681.

[47]

Yan, J.; Bassler, B. L. Surviving as a community: Antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe 2019, 26, 15–21.

[48]

He, W. H.; You, M. L.; Wan, W. T.; Xu, F.; Li, F.; Li, A. Point-of-care periodontitis testing: Biomarkers, current technologies, and perspectives. Trends Biotechnol. 2018, 36, 1127–1144.

[49]

Cox, N.; Pokrovskii, M.; Vicario, R.; Geissmann, F. Origins, biology, and diseases of tissue macrophages. Annu. Rev. Immunol. 2021, 39, 313–344.

[50]

Borcherding, N.; Jia, W. T.; Giwa, R.; Field, R. L.; Moley, J. R.; Kopecky, B. J.; Chan, M. M.; Yang, B. Q.; Sabio, J. M.; Walker, E. C. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 2022, 34, 1499–1513.e8.

[51]

Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S. A.; Mardani, F.; Seifi, B.; Mohammadi, A.; Afshari, J. T.; Sahebkar, A. Macrophage plasticity, polarization, and function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440.

[52]

Lee, S.; Park, J.; Kim, S.; Ok, J.; Yoo, J. I.; Kim, Y. S.; Ahn, Y.; Kim, T. I.; Ko, H. C.; Lee, J. Y. High-performance implantable bioelectrodes with immunocompatible topography for modulation of macrophage responses. ACS Nano 2022, 16, 7471–7485.

[53]

Russell, D. G.; Huang, L.; VanderVen, B. C. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 2019, 19, 291–304.

[54]

Liu, Y.; Hu, P.; Zheng, Z. H.; Zhong, D.; Xie, W. C.; Tang, Z. B.; Pan, B. X.; Luo, J.; Zhang, W. H.; Wang, X. L. Photoresponsive vaccine-like CAR-M system with high-efficiency central immune regulation for inflammation-related depression. Adv. Mater. 2022, 34, 2108525.

[55]

Kourtzelis, I.; Li, X. F.; Mitroulis, I.; Grosser, D.; Kajikawa, T.; Wang, B. M.; Grzybek, M.; Von Renesse, J.; Czogalla, A.; Troullinaki, M. et al. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat. Immunol. 2019, 20, 40–49.

[56]

Ronkina, N.; Gaestel, M. MAPK-activated protein kinases:Servant or partner? Annu. Rev. Biochem. 2022, 91, 505–540.

[57]

De Maeyer, R. P. H.; Van De Merwe, R. C.; Louie, R.; Bracken, O. V.; Devine, O. P.; Goldstein, D. R.; Uddin, M.; Akbar, A. N.; Gilroy, D. W. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat. Immunol. 2020, 21, 615–625.

[58]

Yuan, Z.; Wu, J. S.; Fu, Z. X.; Meng, S. Y.; Dai, L. L.; Cai, K. Y. Polydopamine-mediated interfacial functionalization of implants for accelerating infected bone repair through light-activatable antibiosis and carbon monoxide gas regulated macrophage polarization. Adv. Funct. Mater. 2022, 32, 2200374.

[59]

Li, J.; Song, S.; Meng, J. S.; Tan, L.; Liu, X. M.; Zheng, Y. F.; Li, Z. Y.; Yeung, K. W. K.; Cui, Z. D.; Liang, Y. Q. et al. 2D MOF periodontitis photodynamic ion therapy. J. Am. Chem. Soc. 2021, 143, 15427–15439.

[60]

Williams, D. W.; Greenwell-Wild, T.; Brenchley, L.; Dutzan, N.; Overmiller, A.; Sawaya, A. P.; Webb, S.; Martin, D.; NIDCD/NIDCR Genomics and Computational Biology Core; Hajishengallis, G. et al. Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. Cell 2021, 184, 4090–4104.e15.

[61]

Plemmenos, G.; Evangeliou, E.; Polizogopoulos, N.; Chalazias, A.; Deligianni, M.; Piperi, C. Central regulatory role of cytokines in periodontitis and targeting options. Curr. Med. Chem. 2021, 28, 3032–3058.

[62]

Vieira, L. V.; De Sousa, L. M.; Maia, T. A. C.; Gusmão, J. N. F. M.; Goes, P.; Pereira, K. M. A.; Miyajima, F.; Gondim, D. V. Milk kefir therapy reduces inflammation and alveolar bone loss on periodontitis in rats. Biomed. Pharmacother. 2021, 139, 111677.

[63]

Bai, B. B.; Gu, C. Y.; Lu, X. H.; Ge, X. Y.; Yang, J. L.; Wang, C. F.; Gu, Y. C.; Deng, A. D.; Guo, Y. H.; Feng, X. M. et al. Polydopamine functionalized mesoporous silica as ROS-sensitive drug delivery vehicles for periodontitis treatment by modulating macrophage polarization. Nano Res. 2021, 14, 4577–4583.

File
12274_2022_5349_MOESM1_ESM.pdf (3.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 October 2022
Revised: 17 November 2022
Accepted: 19 November 2022
Published: 15 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was funded by the National Natural Science Foundation of China (Nos. 31860263, 81860477, 32071223, and 82260194), Key Youth Project of Jiangxi Province (No. 20202ACB216002), Key Research and Development Program of Jiangxi Province (Nos. 20212BBG73004, 20212BBG71005, and 20192ACB50014), the Local Science and Technology Development Fund (No. 20221ZDG020068), Key Laboratory of Jiangxi Province for Transfusion Medicine (No. 20212BCD42006), and Graduate Innovative Special Fund Projects of Jiangxi Province (Nos. YC2021-B045 and YC2021-B057).

Return