Journal Home > Volume 16 , Issue 5

Although solar steam generation is an eco-friendly approach for desalinating seawater and purifying wastewater, there are still issues on how to improve the efficiency of solar energy utilization and accelerate the water and heat transport inside the solar-driven water evaporators. Herein, we design a central hollow cylindrical reduced graphene oxide (RGO) foam with vertically and radially orientated channels as a solar steam generation device for efficient water evaporation and purification. The vertically aligned porous channels accelerate upward transport of water to the top evaporation surface, while the radially aligned porous channels facilitate water transport and heat transfer along the radial directions for fully utilizing the heat accumulated inside the central cylindrical hole of the foam. The central hole of the foam plays a highly positive role in accumulating more heat for accelerating the water evaporation, and the newly generated inner sidewall resulted from the central hole can gain extra thermal energy from surrounding environment in the same way as the outer sidewall of the foam due to the surface cooling effect of the water evaporation. As a result, the vertically and radially aligned RGO foam evaporator with central hollow cylinder achieves a high solar steam generation rate of 2.32 kg·m−2·h−1 with an exceptional energy conversion efficiency of 120.9% under 1-sun irradiation, superior to the vertically aligned RGO foam without the central hole (1.83 kg·m−2·h−1, 96.9%) because of the enhanced water and heat transfer inside the porous channels, and the efficient utilization of environmental energy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Constructing central hollow cylindrical reduced graphene oxide foams with vertically and radially orientated porous channels for highly efficient solar-driven water evaporation and purification

Show Author's information Changjun Li1,2Wei Li3Hao-Yu Zhao1Xin-Yue Feng2Xiaofeng Li1( )Zhong-Zhen Yu2( )
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Although solar steam generation is an eco-friendly approach for desalinating seawater and purifying wastewater, there are still issues on how to improve the efficiency of solar energy utilization and accelerate the water and heat transport inside the solar-driven water evaporators. Herein, we design a central hollow cylindrical reduced graphene oxide (RGO) foam with vertically and radially orientated channels as a solar steam generation device for efficient water evaporation and purification. The vertically aligned porous channels accelerate upward transport of water to the top evaporation surface, while the radially aligned porous channels facilitate water transport and heat transfer along the radial directions for fully utilizing the heat accumulated inside the central cylindrical hole of the foam. The central hole of the foam plays a highly positive role in accumulating more heat for accelerating the water evaporation, and the newly generated inner sidewall resulted from the central hole can gain extra thermal energy from surrounding environment in the same way as the outer sidewall of the foam due to the surface cooling effect of the water evaporation. As a result, the vertically and radially aligned RGO foam evaporator with central hollow cylinder achieves a high solar steam generation rate of 2.32 kg·m−2·h−1 with an exceptional energy conversion efficiency of 120.9% under 1-sun irradiation, superior to the vertically aligned RGO foam without the central hole (1.83 kg·m−2·h−1, 96.9%) because of the enhanced water and heat transfer inside the porous channels, and the efficient utilization of environmental energy.

Keywords: reduced graphene oxide, solar steam generation, seawater desalination, hollow cylindrical foams, water evaporation rate

References(66)

[1]

Elimelech, M.; Phillip, W. A. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717.

[2]

Meng, S.; Tang, C. Y.; Jia, J.; Yang, J.; Yang, M. B.; Yang, W. A wave-driven piezoelectric solar evaporator for water purification. Adv. Energy Mater. 2022, 12, 2200087.

[3]

Dong, X. Y.; Cao, L. T.; Si, Y.; Ding, B.; Deng, H. B. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination. Adv. Mater. 2020, 32, 1908269.

[4]

Zhou, X. Y.; Guo, Y. H.; Zhao, F.; Yu, G. H. Hydrogels as an emerging material platform for solar water purification. Acc. Chem. Res. 2019, 52, 3244–3253.

[5]

Huang, C. H.; Huang, J. X.; Chiao, Y. H.; Chang, C. M.; Hung, W. S.; Lue, S. J.; Wang, C. F.; Hu, C. C.; Lee, K. R.; Pan, H. H. et al. Tailoring of a piezo-photo-thermal solar evaporator for simultaneous steam and power generation. Adv. Funct. Mater. 2021, 31, 2010422.

[6]

Mei, T.; Chen, J. H.; Zhao, Q. H.; Wang, D. Nanofibrous aerogels with vertically aligned microchannels for efficient solar steam generation. ACS Appl. Mater. Interfaces 2020, 12, 42686–42695.

[7]

Deng, J. Y.; Xiao, S. N.; Wang, B.; Li, Q.; Li, G. S.; Zhang, D. Q.; Li, H. X. Self-suspended photothermal microreactor for water desalination and integrated volatile organic compound removal. ACS Appl. Mater. Interfaces 2020, 12, 51537–51545.

[8]

Wu, X.; Wang, Y. D.; Wu, P.; Zhao, J. Y.; Lu, Y.; Yang, X. F.; Xu, H. L. Dual-zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 2021, 31, 2102618.

[9]

Li, W.; Li, X. F.; Liu, J.; Zeng, M. J.; Feng, X. Y.; Jia, X. Q.; Yu, Z. Z. Coating of wood with Fe2O3-decorated carbon nanotubes by one-step combustion for efficient solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 22845–22854.

[10]

Zhao, H. Y.; Huang, J.; Zhou, J.; Chen, L. F.; Wang, C. M.; Bai, Y. X.; Zhou, J.; Deng, Y.; Dong, W. X.; Li, Y. S. et al. Biomimetic design of macroporous 3D truss materials for efficient interfacial solar steam generation. ACS Nano 2022, 16, 3554–3562.

[11]

Wei, Z. C.; Cai, C. Y.; Huang, Y. Z.; Wang, Y. Q.; Fu, Y. Biomimetic surface strategy of spectrum-tailored liquid metal via blackbody inspiration for highly efficient solar steam generation, desalination, and electricity generation. Nano Energy 2021, 86, 106138.

[12]

Ding, D. W.; Wu, H.; He, X. P.; Yang, F.; Gao, C. B.; Yin, Y. D.; Ding, S. J. A metal nanoparticle assembly with broadband absorption and suppressed thermal radiation for enhanced solar steam generation. J. Mater. Chem. A 2021, 9, 11241–11247.

[13]

Shao, B.; Wang, Y. D.; Wu, X.; Lu, Y.; Yang, X. F.; Chen, G. Y.; Owens, G.; Xu, H. L. Stackable nickel-cobalt@polydopamine nanosheet based photothermal sponges for highly efficient solar steam generation. J. Mater. Chem. A 2020, 8, 11665–11673.

[14]

Zhang, Y.; Wang, Y.; Yu, B.; Yin, K. B.; Zhang, Z. H. Hierarchically structured black gold film with ultrahigh porosity for solar steam generation. Adv. Mater. 2022, 34, 2200108.

[15]

Ding, S. J.; Ma, L.; Feng, J. R.; Chen, Y. L.; Yang, D. J.; Wang, Q. Q. Surface-roughness-adjustable Au nanorods with strong plasmon absorption and abundant hotspots for improved SERS and photothermal performances. Nano Res. 2022, 15, 2715–2721.

[16]

Huang, W.; Su, P. W.; Cao, Y.; Li, C. C.; Chen, D. L.; Tian, X. L.; Su, Y. Q.; Qiao, B.; Tu, J. C.; Wang, X. H. Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation. Nano Energy 2020, 69, 104465.

[17]

Yang, M. Q.; Tan, C. F.; Lu, W. H.; Zeng, K. Y.; Ho, G. W. Spectrum tailored defective 2D semiconductor nanosheets aerogel for full-spectrum-driven photothermal water evaporation and photochemical degradation. Adv. Funct. Mater. 2020, 30, 2004460.

[18]

Guo, Y. H.; Zhou, X. Y.; Zhao, F.; Bae, J.; Rosenberger, B.; Yu, G. H. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 2019, 13, 7913–7919.

[19]

Wang, L. F.; Liu, D.; Jiang, L.; Ma, Y. X.; Yang, G. L.; Qian, Y. J.; Lei, W. W. Advanced 2D–2D heterostructures of transition metal dichalcogenides and nitrogen-rich nitrides for solar water generation. Nano Energy 2022, 98, 107192.

[20]

Chen, X. B.; Li, P.; Wang, J.; Wan, J. W.; Yang, N. L.; Xu, B.; Tong, L. M.; Gu, L.; Du, J.; Lin, J. J. et al. Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Res. 2022, 15, 4117–4123.

[21]

Xiao, P.; Gu, J. C.; Zhang, C.; Ni, F.; Liang, Y.; He, J.; Zhang, L.; Ouyang, J. Y.; Kuo, S. W.; Chen, T. A scalable, low-cost and robust photo-thermal fabric with tunable and programmable 2D/3D structures towards environmentally adaptable liquid/solid-medium water extraction. Nano Energy 2019, 65, 104002.

[22]

Ni, F.; Xiao, P.; Zhang, C.; Liang, Y.; Gu, J. C.; Zhang, L.; Chen, T. Micro-/macroscopically synergetic control of switchable 2D/3D photothermal water purification enabled by robust, portable, and cost-effective cellulose papers. ACS Appl. Mater. Interfaces 2019, 11, 15498–15506.

[23]

Sun, Y. K.; Zong, X. P.; Qu, D.; Chen, G.; An, L.; Wang, X. Y.; Sun, Z. C. Water management by hierarchical structures for highly efficient solar water evaporation. J. Mater. Chem. A 2021, 9, 7122–7128.

[24]

Lu, Y.; Fan, D. Q.; Shen, Z. Y.; Zhang, H.; Xu, H. L.; Yang, X. F. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 2022, 95, 107016.

[25]

Liang, H. X.; Liao, Q. H.; Chen, N.; Liang, Y.; Lv, G. Q.; Zhang, P. P.; Lu, B.; Qu, L. T. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew. Chem., Int. Ed. 2019, 58, 19041–19046.

[26]

Yang, H.; Sun, Y. H.; Peng, M. W.; Cai, M. J.; Zhao, B.; Li, D.; Liang, Z. Q.; Jiang, L. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity. ACS Nano 2022, 16, 2511–2520.

[27]

Wang, J.; Shi, Q. Q.; Li, C. J.; Zhang, Y. Z.; Du, S. Y.; Mao, J. F.; Wang, J. Pistia-inspired photothermal fabric based on waste carbon fiber for low-cost vapor generation: An industrialization route. Adv. Funct. Mater. 2022, 32, 2201922.

[28]

Li, W.; Li, X. F.; Chang, W.; Wu, J.; Liu, P. F.; Wang, J. J.; Yao, X.; Yu, Z. Z. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Res. 2020, 13, 3048–3056.

[29]

Dong, X. Y.; Li, H.; Gao, L. F.; Chen, C. J.; Shi, X. W.; Du, Y. M.; Deng, H. B. Janus fibrous mats based suspended type evaporator for salt resistant solar desalination and salt recovery. Small 2022, 18, 2107156.

[30]

Lei, W. W.; Khan, S.; Chen, L.; Suzuki, N.; Terashima, C.; Liu, K. S.; Fujishima, A.; Liu, M. J. Hierarchical structures hydrogel evaporator and superhydrophilic water collect device for efficient solar steam evaporation. Nano Res. 2021, 14, 1135–1140.

[31]

Meng, S.; Zha, X. J.; Wu, C.; Zhao, X.; Yang, M. B.; Yang, W. Interfacial radiation-absorbing hydrogel film for efficient thermal utilization on solar evaporator surfaces. Nano Lett. 2021, 21, 10516–10524.

[32]

Huang, L. B.; Ling, L.; Su, J. J.; Song, Y.; Wang, Z. Y.; Tang, B. Z.; Westerhoff, P.; Ye, R. Q. Laser-engineered graphene on wood enables efficient antibacterial, anti-salt-fouling, and lipophilic-matter-rejection solar evaporation. ACS Appl. Mater. Interfaces 2020, 12, 51864–51872.

[33]

Min, P.; Liu, J.; Li, X. F.; An, F.; Liu, P. F.; Shen, Y. X.; Koratkar, N.; Yu, Z. Z. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion. Adv. Funct. Mater. 2018, 28, 1805365.

[34]

Zhang, P. P.; Li, J.; Lv, L. X.; Zhao, Y.; Qu, L. T. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017, 11, 5087–5093.

[35]

Li, Y. J.; Gao, T. T.; Yang, Z.; Chen, C. J.; Kuang, Y. D.; Song, J. W.; Jia, C.; Hitz, E. M.; Yang, B.; Hu, L. B. Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. Nano Energy 2017, 41, 201–209.

[36]

Wang, Y. D.; Wu, X.; Gao, T.; Lu, Y.; Yang, X. F.; Chen, G. Y.; Owens, G.; Xu, H. L. Same materials, bigger output: A reversibly transformable 2D–3D photothermal evaporator for highly efficient solar steam generation. Nano Energy 2021, 79, 105477.

[37]

Gao, T.; Wang, Y. D.; Wu, X.; Wu, P.; Yang, X. F.; Li, Q.; Zhang, Z. Z.; Zhang, D. K.; Owens, G.; Xu, H. L. More from less: Improving solar steam generation by selectively removing a portion of evaporation surface. Sci. Bull. 2022, 67, 1572–1580.

[38]

Li, W.; Tian, X. H.; Li, X. F.; Liu, J.; Li, C. J.; Feng, X. Y.; Shu, C.; Yu, Z. Z. An environmental energy-enhanced solar steam evaporator derived from MXene-decorated cellulose acetate cigarette filter with ultrahigh solar steam generation efficiency. J. Colloid Interface Sci. 2022, 606, 748–757.

[39]

Wang, Y. D.; Wu, X.; Wu, P.; Zhao, J. Y.; Yang, X. F.; Owens, G.; Xu, H. L. Enhancing solar steam generation using a highly thermally conductive evaporator support. Sci. Bull. 2021, 66, 2479–2488.

[40]

Meng, X. Y.; Yang, J. H.; Ramakrishna, S.; Sun, Y. M.; Dai, Y. Q. Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation. ACS Sustainable Chem. Eng. 2020, 8, 4955–4965.

[41]

Zhang, Q.; Yi, G.; Fu, Z.; Yu, H. T.; Chen, S.; Quan, X. Vertically aligned Janus MXene-based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano 2019, 13, 13196–13207.

[42]

Li, X. P.; Li, X. F.; Li, H. G.; Zhao, Y.; Wu, J.; Yan, S. K.; Yu, Z. Z. Reshapable MXene/graphene oxide/polyaniline plastic hybrids with patternable surfaces for highly efficient solar-driven water purification. Adv. Funct. Mater. 2022, 32, 2110636.

[43]

Wang, H. Q.; Zhang, C.; Zhang, Z. H.; Zhou, B.; Shen, J.; Du, A. Artificial trees inspired by Monstera for highly efficient solar steam generation in both normal and weak light environments. Adv. Funct. Mater. 2020, 30, 2005513.

[44]

Cao, H. L.; Peng, X.; Zhao, M.; Liu, P. Z.; Xu, B. S.; Guo, J. J. Oxygen functional groups improve the energy storage performances of graphene electrochemical supercapacitors. RSC Adv. 2018, 8, 2858–2865.

[45]

Wu, Y. P.; Wang, B.; Ma, Y. F.; Huang, Y.; Li, N.; Zhang, F.; Chen, Y. S. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res. 2010, 3, 661–669.

[46]

Krishna, R.; Fernandes, D. M.; Venkataramana, E.; Dias, C.; Ventura, J.; Freire, C.; Titus, E. Improved reduction of graphene oxide. Mater. Today:Proc. 2015, 2, 423–430.

[47]

Li, W.; Tian, X. H.; Li, X. F.; Han, S.; Li, C. J.; Zhai, X. Z.; Kang, Y.; Yu, Z. Z. Ultrahigh solar steam generation rate of a vertically aligned reduced graphene oxide foam realized by dynamic compression. J. Mater. Chem. A 2021, 9, 14859–14867.

[48]

Meng, X. Y.; Lu, L.; Sun, C. W. Green synthesis of three-dimensional MnO2/graphene hydrogel composites as a high-performance electrode material for supercapacitors. ACS Appl. Mater. Interfaces 2018, 10, 16474–16481.

[49]

Ammar, M. R.; Galy, N.; Rouzaud, J. N.; Toulhoat, N.; Vaudey, C. E.; Simon, P.; Moncoffre, N. Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing. Carbon 2015, 95, 364–373.

[50]

Meng, S.; Zhao, X.; Tang, C. Y.; Yu, P.; Bao, R. Y.; Liu, Z. Y.; Yang, M. B.; Yang, W. A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation. J. Mater. Chem. A 2020, 8, 2701–2711.

[51]

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

[52]

Fan, X. Q.; Yang, Y.; Shi, X. L.; Liu, Y.; Li, H. P.; Liang, J. J.; Chen, Y. S. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance. Adv. Funct. Mater. 2020, 30, 2007110.

[53]

Wang, Y. C.; Wang, C. Z.; Liang, W. Y.; Song, X. J.; Zhang, Y. J.; Huang, M. H.; Jiang, H. Q. Multifunctional perovskite oxide for efficient solar-driven evaporation and energy-saving regeneration. Nano Energy 2020, 70, 104538.

[54]

Storer, D. P.; Phelps, J. L.; Wu, X.; Owens, G.; Khan, N. I.; Xu, H. L. Graphene and rice-straw-fiber-based 3D photothermal aerogels for highly efficient solar evaporation. ACS Appl. Mater. Interfaces 2020, 12, 15279–15287.

[55]

Jin, Y.; Chang, J.; Shi, Y.; Shi, L.; Hong, S.; Wang, P. A highly flexible and washable nonwoven photothermal cloth for efficient and practical solar steam generation. J. Mater. Chem. A 2018, 6, 7942–7949.

[56]

Yu, M. Y.; Li, C. J.; Li, W.; Min, P. Reduced graphene oxide decorated cellulose acetate filter evaporators for highly efficient water evaporation and purification driven by solar energy and environmental energy. Adv. Sustainable Syst. 2022, 6, 2200023.

[57]

Tang, J. B.; Song, Z. P.; Lu, X.; Li, N. B.; Yang, L. P.; Sun, T. Y.; Wang, Y. H.; Shao, Y.; Liu, H.; Xue, G. B. Achieving excellent thermal transfer in highly light absorbing conical aerogel for simultaneous passive cooling and solar steam generation. Chem. Eng. J. 2022, 429, 132089.

[58]

Liu, Y.; Liu, H. J.; Xiong, J.; Li, A. L.; Wang, R. W.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation. Chem. Eng. J. 2022, 427, 131539.

[59]

Zou, Y.; Yang, P.; Yang, L.; Li, N.; Duan, G. G.; Liu, X. H.; Li, Y. W. Boosting solar steam generation by photothermal enhanced polydopamine/wood composites. Polymer 2021, 217, 123464.

[60]

Wen, B. Y.; Zhang, X. Y.; Yan, Y. H.; Huang, Y. Q.; Lin, S.; Zhu, Y. L.; Wang, Z. P.; Zhou, B. H.; Yang, S. H.; Liu, J. Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation. Desalination 2021, 516, 115228.

[61]

Wang, T. X.; Gao, S. Y.; Wang, G.; Wang, H.; Bai, J. B.; Ma, S. H.; Wang, B. B. Three-dimensional hierarchical oxygen vacancy-rich WO3-decorated Ni foam evaporator for high-efficiency solar-driven interfacial steam generation. J. Colloid Interface Sci. 2021, 602, 767–777.

[62]

Wang, S.; Niu, Y.; Wang, C. J.; Wang, F.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. Modified hollow glass microspheres/reduced graphene oxide composite aerogels with low thermal conductivity for highly efficient solar steam generation. ACS Appl. Mater. Interfaces 2021, 13, 42803–42812.

[63]

Wang, S.; Fan, Y. K.; Wang, F.; Su, Y. N.; Zhou, X.; Zhu, Z. Q.; Sun, H. X.; Liang, W. D.; Li, A. Potentially scalable fabrication of salt-rejection evaporator based on electrogenerated polypyrrole-coated nickel foam for efficient solar steam generation. Desalination 2021, 505, 114982.

[64]

Li, T. T.; Fang, Q. L.; Wang, J. Q.; Lin, H. B.; Han, Q.; Wang, P.; Liu, F. Exceptional interfacial solar evaporation via heteromorphic PTFE/CNT hollow fiber arrays. J. Mater. Chem. A 2021, 9, 390–399.

[65]

Gong, F.; Li, H.; Wang, W. B.; Huang, J. G.; Xia, D. W.; Liao, J. X.; Wu, M. Q.; Papavassiliou, D. V. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 2019, 58, 322–330.

[66]

Xu, N.; Hu, X. Z.; Xu, W. C.; Li, X. Q.; Zhou, L.; Zhu, S. N.; Zhu, J. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 2017, 29, 1606762.

File
12274_2022_5348_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 October 2022
Revised: 17 November 2022
Accepted: 20 November 2022
Published: 12 January 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. U1905217, 52090034, and 51773008), and the Fundamental Research Funds for the Central Universities (No. XK1802) is gratefully acknowledged.

Return