AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Achieving ultrafast superlubricity with layered double hydroxides

Kunpeng Wang1,2Yuhong Liu1( )Hongdong Wang2( )Jianbin Luo1( )
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
School of Mechatronic Engineering, Shanghai University, Shanghai 200444, China
Show Author Information

Graphical Abstract

Superlubricity of engineering steel can be quickly obtained in the presence of layered double hydroxide nanosheets.

Abstract

Layered double hydroxides (LDHs) have the potential to be superlubricated materials due to their strong adsorption effect and weak internal interaction. However, obtaining stable superlubricity during the ultrafast time (< 10 s) is still a challenge. Here, we demonstrated macroscale superlubricity based on LDHs of multiple metal ions at high surface roughness, achieving superlow friction coefficients (0.006) and ultrafast wearing-in time (< 7 s), which mainly originated from tribochemical reactions and the formation of nanostructured adsorption layers. Through cross-sectional analysis and density functional theory, we revealed the properties of the protective tribofilm to achieve ultrafast superlubricity. LDHs strongly adsorbed on the surface of the bearing steel, and the sliding interface transformed into a heterogeneous interface between the polytetrafluoroethylene and LDH, leading to macroscale superlubricity. These findings demonstrate that tribochemical treatment of surfaces produces tribofilm that effectively reduces wearing-in time and promotes ultralow friction.

Electronic Supplementary Material

Download File(s)
12274_2022_5343_MOESM1_ESM.pdf (1.3 MB)

References

[1]

Holmberg, K.; Erdemir, A. The impact of tribology on energy use and CO2 emission globally and in combustion engine and electric cars. Tribol. Int. 2019, 135, 389–396.

[2]

Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284.

[3]

Li, H. S.; Geng, Y. C.; Shinwari, R.; Wang, Y. J.; Rjoub, H. Does renewable energy electricity and economic complexity index help to achieve carbon neutrality target of top exporting countries? J. Environ. Manage. 2021, 299, 113386.

[4]

Chen, X.; Lin, B. Q. Towards carbon neutrality by implementing carbon emissions trading scheme: Policy evaluation in China. Energy Policy 2021, 157, 112510.

[5]

Alam, M. Z.; De Leon, I.; Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science 2016, 352, 795–797.

[6]

Biswas, S.; Whitney, W. S.; Grajower, M. Y.; Watanabe, K.; Taniguchi, T.; Bechtel, H. A.; Rossman, G. R.; Atwater, H. A. Tunable intraband optical conductivity and polarization-dependent epsilon-near-zero behavior in black phosphorus. Sci. Adv. 2021, 7, eabd4623.

[7]

Kolle, M.; Lee, S. Progress and opportunities in soft photonics and biologically inspired optics. Adv. Mater. 2018, 30, 1702669.

[8]

Berman, D.; Erdemir, A.; Sumant, A. V. Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 2018, 12, 2122–2137.

[9]

Curry, J. F.; Babuska, T. F.; Furnish, T. A.; Lu, P.; Adams, D. P.; Kustas, A. B.; Nation, B. L.; Dugger, M. T.; Chandross, M.; Clark, B. G. et al. Achieving ultralow wear with stable nanocrystalline metals. Adv. Mater. 2018, 30, 1802026.

[10]

Grützmacher, P. G.; Suarez, S.; Tolosa, A.; Gachot, C.; Song, G. C.; Wang, B.; Presser, V.; Mücklich, F.; Anasori, B.; Rosenkranz, A. Superior wear-resistance of Ti3C2Tx multilayer coatings. ACS Nano 2021, 15, 8216–8224.

[11]

Berman, D.; Deshmukh, S. A.; Sankaranarayanan, S. K. R. S.; Erdemir, A.; Sumant, A. V. Extraordinary macroscale wear resistance of one atom thick graphene layer. Adv. Funct. Mater. 2014, 24, 6640–6646.

[12]

Mutyala, K. C.; Wu, Y. A.; Erdemir, A.; Sumant, A. V. Graphene-MoS2 ensembles to reduce friction and wear in DLC-Steel contacts. Carbon 2019, 146, 524–527.

[13]

Berman, D.; Mutyala, K. C.; Srinivasan, S.; Sankaranarayanan, S. K. R. S.; Erdemir, A.; Shevchenko, E. V.; Sumant, A. V. Iron-nanoparticle driven tribochemistry leading to superlubric sliding interfaces. Adv. Mater. Interfaces 2019, 6, 1901416.

[14]

Berman, D.; Erdemir, A. Achieving ultralow friction and wear by tribocatalysis: Enabled by in-operando formation of nanocarbon films. ACS Nano 2021, 15, 18865–18879.

[15]

Hod, O.; Meyer, E.; Zheng, Q. S.; Urbakh, M. Structural superlubricity and ultralow friction across the length scales. Nature 2018, 563, 485–492.

[16]

Song, Y. M.; Mandelli, D.; Hod, O.; Urbakh, M.; Ma, M.; Zheng, Q. S. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 2018, 17, 894–899.

[17]

Ren, X. Y.; Yang, X.; Xie, G. X.; He, F.; Wang, R.; Zhang, C. H.; Guo, D.; Luo, J. B. Superlubricity under ultrahigh contact pressure enabled by partially oxidized black phosphorus nanosheets. npj 2D Mater. Appl. 2021, 5, 44.

[18]

Wyatt, B. C.; Rosenkranz, A.; Anasori, B. 2D MXenes: Tunable mechanical and tribological properties. Adv. Mater. 2021, 33, 2007973.

[19]

Ruiz, V. R. S.; Kuwahara, T.; Galipaud, J.; Masenelli-Varlot, K.; Ben Hassine, M.; Héau, C.; Stoll, M.; Mayrhofer, L.; Moras, G.; Martin, J. M. et al. Interplay of mechanics and chemistry governs wear of diamond-like carbon coatings interacting with ZDDP-additivated lubricants. Nat. Commun. 2021, 12, 4550.

[20]

Tian, J. S.; Yin, X.; Li, J. J.; Qi, W.; Huang, P.; Chen, X. C.; Luo, J. B. Tribo-induced interfacial material transfer of an atomic force microscopy probe assisting superlubricity in a WS2/graphene heterojunction. ACS Appl. Mater. Interfaces 2020, 12, 4031–4040.

[21]

Ge, X. Y.; Li, J. J.; Zhang, C. H.; Luo, J. B. Liquid superlubricity of polyethylene glycol aqueous solution achieved with boric acid additive. Langmuir 2018, 34, 3578–3587.

[22]

Banerjee, S.; Wehbi, M.; Manseri, A.; Mehdi, A.; Alaaeddine, A.; Hachem, A.; Ameduri, B. Poly(vinylidene fluoride) containing phosphonic acid as anticorrosion coating for steel. ACS Appl. Mater. Interfaces 2017, 9, 6433–6443.

[23]

Zhang, C. X.; Chen, J. M.; Liu, M. M.; Liu, Y. H.; Liu, Z. F.; Chu, H. Y.; Cheng, Q.; Wang, J. H. Regulation mechanism of biomolecule interaction behaviors on the superlubricity of hydrophilic polymer coatings. Friction 2022, 10, 94–109.

[24]

Han, T.; Zhang, C.; Chen, X.; Li, J.; Wang, W.; Luo, J. Contribution of a tribo-induced silica layer to macroscale superlubricity of hydrated ions. J. Phys. Chem. C 2019, 123, 20270–20277.

[25]

Han, T. Y.; Zhang, C. H.; Li, J. J.; Yuan, S. H.; Chen, X. C.; Zhang, J. Y.; Luo, J. B. Origins of superlubricity promoted by hydrated multivalent ions. J. Phys. Chem. Lett. 2020, 11, 184–190.

[26]

Zhang, C. X.; Liu, Y. H.; Wen, S. Z.; Wang, S. Poly(vinylphosphonic acid) (PVPA) on titanium alloy acting as effective cartilage-like superlubricity coatings. ACS Appl. Mater. Interfaces 2014, 6, 17571–17578.

[27]

Schreiber, P. J.; Schneider, J. Liquid superlubricity obtained for self-mated silicon carbide in nonaqueous low-viscosity fluid. Tribol. Int. 2019, 134, 7–14.

[28]

Shi, S.; Guo, D.; Luo, J. B. Micro/atomic-scale vibration induced superlubricity. Friction 2021, 9, 1163–1174.

[29]

Li, J. J.; Zhang, C. H.; Deng, M. M.; Luo, J. B. Reduction of friction stress of ethylene glycol by attached hydrogen ions. Sci. Rep. 2014, 4, 7226.

[30]

Li, J. J.; Zhang, C. H.; Ma, L. R.; Liu, Y. H.; Luo, J. B. Superlubricity achieved with mixtures of acids and glycerol. Langmuir 2013, 29, 271–275.

[31]

Ge, X. Y.; Li, J. J.; Wang, H. D.; Zhang, C. H.; Liu, Y. H.; Luo, J. B. Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon 2019, 151, 76–83.

[32]

Ge, X. Y.; Li, J. J.; Zhang, C. H.; Liu, Y. H.; Luo, J. B. Superlubricity and antiwear properties of in situ-formed ionic liquids at ceramic interfaces induced by tribochemical reactions. ACS Appl. Mater. Interfaces 2019, 11, 6568–6574.

[33]

Ren, X. H.; Liao, G. C.; Li, Z. J.; Qiao, H.; Zhang, Y.; Yu, X.; Wang, B.; Tan, H.; Shi, L.; Qi, X. et al. Two-dimensional MOF and COF nanosheets for next-generation optoelectronic applications. Coord. Chem. Rev. 2021, 435, 213781.

[34]

Xie, Z. J.; Zhang, B.; Ge, Y. Q.; Zhu, Y.; Nie, G. H.; Song, Y. F.; Lim, C. K.; Zhang, H.; Prasad, P. N. Chemistry, functionalization, and applications of recent monoelemental two-dimensional materials and their heterostructures. Chem. Rev. 2022, 122, 1127–1207.

[35]

Chen, K. Q.; Wang, C.; Peng, Z. Y.; Qi, K.; Guo, Z. N.; Zhang, Y. P.; Zhang, H. The chemistry of colloidal semiconductor nanocrystals: From metal-chalcogenides to emerging perovskite. Coord. Chem. Rev. 2020, 418, 213333.

[36]

Liu, Y. M.; Song, A. S.; Xu, Z.; Zong, R. L.; Zhang, J.; Yang, W. Y.; Wang, R.; Hu, Y. Z.; Luo, J. B.; Ma, T. B. Interlayer friction and superlubricity in single-crystalline contact enabled by two-dimensional flake-wrapped atomic force microscope tips. ACS Nano 2018, 12, 7638–7646.

[37]

Wang, H. D.; Liu, Y. H. Superlubricity achieved with two-dimensional nano-additives to liquid lubricants. Friction 2020, 8, 1007–1024.

[38]

Laipan, M.; Yu, J. F.; Zhu, R. L.; Zhu, J. X.; Smith, A. T.; He, H. P.; O'Hare, D.; Sun, L. Y. Functionalized layered double hydroxides for innovative applications. Mater. Horiz. 2020, 7, 715–745.

[39]

Ma, L. J.; Wang, Q.; Islam, S. M.; Liu, Y. C.; Ma, S. L.; Kanatzidis, M. G. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42– ion. J. Am. Chem. Soc. 2016, 138, 2858–2866.

[40]

Asif, M.; Aziz, A.; Azeem, M.; Wang, Z. Y.; Ashraf, G.; Xiao, F.; Chen, X. D.; Liu, H. F. A review on electrochemical biosensing platform based on layered double hydroxides for small molecule biomarkers determination. Adv. Colloid Interface Sci. 2018, 262, 21–38.

[41]

Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.

[42]

Wang, H. D.; Wang, Y.; Liu, Y. H.; Zhao, J.; Li, J. J.; Wang, Q.; Luo, J. B. Tribological behavior of layered double hydroxides with various chemical compositions and morphologies as grease additives. Friction 2021, 9, 952–962.

[43]

Wang, H. D.; Liu, Y. H.; Liu, W. R.; Liu, Y. M.; Wang, K. P.; Li, J. J.; Ma, T. B.; Eryilmaz, O. L.; Shi, Y. J.; Erdemir, A. et al. Superlubricity of polyalkylene glycol aqueous solutions enabled by ultrathin layered double hydroxide nanosheets. ACS Appl. Mater. Interfaces 2019, 11, 20249–20256.

[44]

Wang, K. P.; Liu, L.; Song, A. S.; Ma, T. B.; Wang, H. D.; Luo, J. B.; Liu, Y. H. Macroscale superlubricity under ultrahigh contact pressure in the presence of layered double hydroxide nanosheets. Nano Res. 2022, 15, 4700–4709.

[45]

Rudolf, C.; Dragoi, B.; Ungureanu, A.; Chirieac, A.; Royer, S.; Nastro, A.; Dumitriu, E. NiAl and CoAl materials derived from takovite-like LDHs and related structures as efficient chemoselective hydrogenation catalysts. Catal. Sci. Technol. 2014, 4, 179–189.

[46]

Xie, Y. Y.; Yuan, X. Z.; Wu, Z. B.; Zeng, G. M.; Jiang, L. B.; Peng, X.; Li, H. Adsorption behavior and mechanism of Mg/Fe layered double hydroxide with Fe3O4-carbon spheres on the removal of Pb(II) and Cu(II). J. Colloid Interface Sci. 2019, 536, 440–455.

[47]

Lin, Y. J.; Fang, Q. L.; Chen, B. L. Perchlorate uptake and molecular mechanisms by magnesium/aluminum carbonate layered double hydroxides and the calcined layered double hydroxides. Chem. Eng. J. 2014, 237, 38–46.

[48]

Zou, Y. D.; Wang, X. X.; Wu, F.; Yu, S. J.; Hu, Y. Z.; Song, W. C.; Liu, Y. H.; Wang, H. Q.; Hayat, T.; Wang, X. K. Controllable synthesis of Ca-Mg-Al layered double hydroxides and calcined layered double oxides for the efficient removal of U(VI) from wastewater solutions. ACS Sustainable Chem. Eng. 2017, 5, 1173–1185.

[49]

Kloprogge, J. T.; Wharton, D.; Hickey, L.; Frost, R. L. Infrared and Raman study of interlayer anions CO32–, NO3, SO42– and ClO4 in Mg/Al-hydrotalcite. Am. Mineral. 2002, 87, 623–629.

[50]

Li, L.; Ma, R. Z.; Ebina, Y.; Iyi, N.; Sasaki, T. Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem. Mater. 2005, 17, 4386–4391.

[51]

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

[52]

Ma, R. Z.; Liu, Z. P.; Li, L.; Iyi, N.; Sasaki, T. Exfoliating layered double hydroxides in formamide: A method to obtain positively charged nanosheets. J. Mater. Chem. 2006, 16, 3809–3813.

[53]

Zhou, J. Z.; Xu, Z. P.; Qiao, S. Z.; Liu, J. Y.; Liu, Q.; Xu, Y. F.; Zhang, J.; Qian, G. R. Triphosphate removal processes over ternary CaMgAl-layered double hydroxides. Appl. Clay Sci. 2011, 54, 196–201.

[54]

Cho, M. H.; Cho, K. H.; Kim, S. J.; Kim, D. H.; Jang, H. The role of transfer layers on friction characteristics in the sliding interface between friction materials against gray iron brake disks. Tribol. Lett. 2005, 20, 101–108.

[55]

Han, T. Y.; Zhang, S. W.; Zhang, C. H. Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms. Friction 2022, 10, 1137–1165.

[56]

Dong, Y.; Duan, Z. Q.; Tao, Y.; Wei, Z. Y.; Gueye, B.; Zhang, Y.; Chen, Y. F. Friction evolution with transition from commensurate to incommensurate contacts between graphene layers. Tribol. Int. 2019, 136, 259–266.

[57]

Vyavhare, K.; Timmons, R. B.; Erdemir, A.; Edwards, B. L.; Aswath, P. B. Tribochemistry of fluorinated ZnO nanoparticles and ZDDP lubricated interface and implications for enhanced anti-wear performance at boundary lubricated contacts. Wear 2021, 474–475, 203717.

[58]

Wang, H. D.; Liu, Y. H.; Liu, W. R.; Wang, R.; Wen, J. G.; Sheng, H. P.; Peng, J. F.; Erdemir, A.; Luo, J. B. Tribological behavior of NiAl-layered double hydroxide nanoplatelets as oil-based lubricant additives. ACS Appl. Mater. Interfaces 2017, 9, 30891–30899.

[59]

Wang, H. D.; Liu, Y. H.; Guo, F. M.; Sheng, H. P.; Xia, K. L.; Liu, W. R.; Wen, J. G.; Shi, Y. J.; Erdemir, A.; Luo, J. B. Catalytically active oil-based lubricant additives enabled by Calcining Ni-Al layered double hydroxides. J. Phys. Chem. Lett. 2020, 11, 113–120.

[60]

Li, Z. Y.; Liu, J.; Li, J. L.; Kang, F. Y.; Gao, F. A novel graphite-based dual ion battery using PP14NTF2 ionic liquid for preparing graphene structure. Carbon 2018, 138, 52–60.

[61]

Peng, W. Y.; Gou, X. L.; Qin, H. L.; Zhao, M. Y.; Zhao, X. Z.; Guo, Z. G. Robust Mg(OH)2/epoxy resin superhydrophobic coating applied to composite insulators. Appl. Surface Sci. 2019, 466, 126–132.

[62]

Jalar, A.; Lah, N. A. C.; Othman, N. K.; Shamsudin, R.; Daud, A. R.; Bakar, S. R. S. Characterization of oxide growth on surface of Al-Mg-Si welded joint. Adv. Mater. Sci. Eng. 2014, 2014, 272804.

[63]

Antušek, A.; Urban, M.; Sadlej, A. J. Lone pair interactions with coinage metal atoms: Weak van der Waals complexes of the coinage metal atoms with water and ammonia. J. Chem. Phys. 2003, 119, 7247–7262.

[64]

Sherwood, P. M. A. Introduction to studies of aluminum and its compounds by XPS. Surf. Sci. Spectra 1998, 5, 1–3.

[65]

Li, K. L.; Feng, S. H.; Jing, C.; Chen, Y. X.; Liu, X. Y.; Zhang, Y. X.; Zhou, L. Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun. 2019, 55, 13773–13776.

[66]

Liu, Z. H.; Tian, X. C.; Xu, X.; He, L.; Yan, M. Y.; Han, C. H.; Li, Y.; Yang, W.; Mai, L. Q. Capacitance and voltage matching between MnO2 nanoflake cathode and Fe2O3 nanoparticle anode for high-performance asymmetric micro-supercapacitors. Nano Res. 2017, 10, 2471–2481.

[67]

Zhang, B. Z.; Cheng, Z. W.; Zhang, G. A.; Lu, Z. B.; Ma, F.; Zhou, F. First-principles theory of atomic-scale friction explored by an intuitive charge density fluctuation surface. Phys. Chem. Chem. Phys. 2019, 21, 24565–24571.

[68]

Gibson, A.; Haydock, R.; Lafemina, J. P. Stability of vacancy defects in MgO: The role of charge neutrality. Phys. Rev. B 1994, 50, 2582–2592.

[69]

Raebiger, H.; Lany, S.; Zunger, A. Charge self-regulation upon changing the oxidation state of transition metals in insulators. Nature 2008, 453, 763–766.

[70]

Wang, K. P.; Wu, H. C.; Wang, H. D.; Liu, Y. H.; Yang, L.; Zhao, L. M. Tribological properties of novel palygorskite nanoplatelets used as oil-based lubricant additives. Friction 2021, 9, 332–343.

Nano Research
Pages 6940-6950
Cite this article:
Wang K, Liu Y, Wang H, et al. Achieving ultrafast superlubricity with layered double hydroxides. Nano Research, 2023, 16(5): 6940-6950. https://doi.org/10.1007/s12274-022-5343-x
Topics:

6136

Views

7

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 06 August 2022
Revised: 12 November 2022
Accepted: 21 November 2022
Published: 07 January 2023
© Tsinghua University Press 2022
Return