Journal Home > Volume 16 , Issue 5

The microstructure design of electrode material is a crucial point to optimize the supercapacitor’s electrochemical properties. In this work, a Bi-based nanocomposite with a three-layer structure (Bi–Bi2O3@carbon armour (CA)/carbon dots (CDs)) is synthesized and investigated. This material inherits high capacitance and high activity from bismuth-based materials, and the coated CA protects the structure from complete oxidization and improves surface hydrophilicity. Furthermore, CDs in CA can enhance the ion conduction efficiency between the catalyst, carbon membrane, and electrolyte. As a consequence, the specific capacitance of the electrode reaches 973 F·g−1 under 1 A·g−1, and the energy density achieves 32.5 Wh·kg−1 with a power density of 266.9 W·kg−1, with impressive electrochemical stability that Coulomb efficiency of the electrode remains about 100% after 5000 cycles. Furthermore, in-situ Fourier transformation infrared (FT-IR) analyzes the structure evolvement of the material during synthesis and finds that the annealing process of the material removes a great number of oxygen-containing groups of CA and CDs, generating oxygen vacancies, defects, and thus active sites, which enhance the capacitance of the material.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Carbon armour with embedded carbon dots for building better supercapacitor electrodes

Show Author's information Yuanyuan Cheng1Yixian Liu1( )Chen Chu1Yunliang Liu1Yaxi Li1Ruqiang Wu1Jianchun Wu2,3Chunqiang Zhuang4( )Zhenhui Kang5( )Haitao Li1( )
Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China

Abstract

The microstructure design of electrode material is a crucial point to optimize the supercapacitor’s electrochemical properties. In this work, a Bi-based nanocomposite with a three-layer structure (Bi–Bi2O3@carbon armour (CA)/carbon dots (CDs)) is synthesized and investigated. This material inherits high capacitance and high activity from bismuth-based materials, and the coated CA protects the structure from complete oxidization and improves surface hydrophilicity. Furthermore, CDs in CA can enhance the ion conduction efficiency between the catalyst, carbon membrane, and electrolyte. As a consequence, the specific capacitance of the electrode reaches 973 F·g−1 under 1 A·g−1, and the energy density achieves 32.5 Wh·kg−1 with a power density of 266.9 W·kg−1, with impressive electrochemical stability that Coulomb efficiency of the electrode remains about 100% after 5000 cycles. Furthermore, in-situ Fourier transformation infrared (FT-IR) analyzes the structure evolvement of the material during synthesis and finds that the annealing process of the material removes a great number of oxygen-containing groups of CA and CDs, generating oxygen vacancies, defects, and thus active sites, which enhance the capacitance of the material.

Keywords: supercapacitor, carbon dots, carbon armour, Bi–Bi2O3 interface

References(52)

[1]

Miller, J. R.; Simon, P. Electrochemical capacitors for energy management. Science 2008, 321, 651–652.

[2]

Gopalsamy, K.; Xu, Z.; Zheng, B. N.; Huang, T. Q.; Kou, L.; Zhao, X. L.; Gao, C. Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors. Nanoscale 2014, 6, 8595–8600.

[3]

Wang, S. X.; Jin, C. C.; Qian, W. J. Bi2O3 with activated carbon composite as a supercapacitor electrode. J. Alloys Compd. 2014, 615, 12–17.

[4]

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

[5]

Yuan, D. S.; Zeng, J. H.; Kristian, N.; Wang, Y.; Wang, X. Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors. Electrochem. Commun. 2009, 11, 313–317.

[6]

Li, L.; Yang, Y. W.; Li, G. H.; Zhang, L. D. Conversion of a Bi nanowire array to an array of Bi–Bi2O3 core–shell nanowires and Bi2O3 nanotubes. Small 2006, 2, 548–553.

[7]

Sarma, B.; Jurovitzki, A. L.; Smith, Y. R.; Mohanty, S. K.; Misra, M. Redox-induced enhancement in interfacial capacitance of the titania nanotube/bismuth oxide composite electrode. ACS Appl. Mater. Interfaces 2013, 5, 1688–1697.

[8]

Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Han, S. H. Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J. Power Sources 2006, 161, 1479–1485.

[9]

Devi, N.; Ghosh, S.; Ray, S. C.; Mallick, K. Organic matrix stabilized ultra-fine bismuth oxide particles for electrochemical energy storage application. ChemistrySelect 2018, 3, 12057–12064.

[10]

Qu, D. Y.; Diehl, D.; Conway, B. E.; Pell, W. G.; Qian, S. Y. Development of high-capacity primary alkaline manganese dioxide/zinc cells consisting of Bi-doping of MnO2. J. Appl. Electrochem. 2005, 35, 1111–1120.

[11]

Lin, Z.; Wang, K.; Wang, X. Z.; Wang, S. J.; Pan, H.; Liu, Y. L.; Xu, S. G.; Cao, S. K. Carbon-coated graphitic carbon nitride nanotubes for supercapacitor applications. ACS Appl. Nano Mater. 2020, 3, 7016–7028.

[12]

Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens, W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

[13]

Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253.

[14]

Strauss, V.; Marsh, K.; Kowal, M. D.; El-Kady, M.; Kaner, R. B. A simple route to porous graphene from carbon nanodots for supercapacitor applications. Adv. Mater. 2018, 30, 1704449.

[15]

Zhu, Y. R.; Wu, Z. B.; Jing, M. J.; Hou, H. S.; Yang, Y. C.; Zhang, Y.; Yang, X. M.; Song, W. X.; Jia, X. N.; Ji, X. B. Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 2015, 3, 866–877.

[16]

Wu, J.; Zhou, Y. J.; Nie, H. D.; Wei, K. Q.; Huang, H.; Liao, F.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots regulate the interface electron transfer and catalytic kinetics of Pt-based alloys catalyst for highly efficient hydrogen oxidation. J. Energy Chem. 2022, 66, 61–67.

[17]

Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 2021, 12, 483.

[18]

Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022, 15, 6026–6035.

[19]

Ţucureanu, V.; Matei, A.; Avram, A. M. FTIR spectroscopy for carbon family study. Crit. Rev. Anal. Chem. 2016, 46, 502–520.

[20]

Astuti, Y.; Fauziyah, A.; Nurhayati, S.; Wulansari, A. D.; Andianingrum, R.; Hakim, A. R.; Bhaduri, G. Synthesis of α-bismuth oxide using solution combustion method and its photocatalytic properties. IOP Conf. Ser.: Mater. Sci. Eng. 2016, 107, 012006.

[21]

Macdonald, D. D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388.

[22]

Bisquert, J.; Compte, A. Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem. 2001, 499, 112–120.

[23]

Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

[24]

Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. Improved grid-based algorithm for Bader charge allocation. J. Comput. Chem. 2007, 28, 899–908.

[25]

Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. :Condens. Matter 2009, 21, 084204.

[26]

Yu, M.; Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 2011, 134, 064111.

[27]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Q. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[28]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[29]
Li, W. H.; Yang, J. R.; Wang, D. S. Long-range interactions in diatomic catalysts boosting electrocatalysis. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202213318.
[30]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[31]

Yang, J. R.; Li, W. H.; Xu, K. N.; Tan, S. D.; Wang, D. S.; Li, Y. D. Regulating the tip effect on single-atom and cluster catalysts: Forming reversible oxygen species with high efficiency in chlorine evolution reaction. Angew. Chem., Int. Ed. 2022, 61, e202200366.

[32]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[33]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[34]

Zhuang, Z. C.; Huang, J. Z.; Li, Y.; Zhou, L.; Mai, L. Q. The holy grail in platinum-free electrocatalytic hydrogen evolution: Molybdenum-based catalysts and recent advances. ChemElectroChem 2019, 6, 3570–3589.

[35]

Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

[36]

Zhang, E. H.; Hu, X.; Meng, L. Z.; Qiu, M.; Chen, J. X.; Liu, Y. J.; Liu, G. Y.; Zhuang, Z. C.; Zheng, X. B.; Zheng, L. R. et al. Single-atom yttrium engineering janus electrode for rechargeable Na-S batteries. J. Am. Chem. Soc. 2022, 144, 18995–19007.

[37]

Cui, T. T.; Wang, Y. P.; Ye, T.; Wu, J.; Chen, Z. Q.; Li, J.; Lei, Y. P.; Wang, D. S.; Li, Y. D. Engineering dual single-atom sites on 2D ultrathin n-doped carbon nanosheets attaining ultra-low-temperature zinc-air battery. Angew. Chem., Int. Ed. 2022, 61, e202115219.

[38]
Li, S. D.; Zhuang, Z. C.; Xia, L. X.; Zhu, J. X.; Liu, Z.; He, R. H.; Luo, W.; Huang, W. Z.; Shi, C. W.; Zhao, Y. et al. Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Sci. China Mater., in press, https://doi.org/10.1007/s40843-022-2116-3.
[39]
Yin, W. N.; Cai, Y. T.; Xie, L. B.; Huang, H.; Zhu, E. C.; Pan, J. N.; Bu, J. Q.; Chen, H.; Yuan, Y.; Zhuang, Z. C. et al. Revisited electrochemical gas evolution reactions from the perspective of gas bubbles. Nano Res., in press, https://doi.org/10.1007/s12274-022-5133-5.
[40]
Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res., in press, https://doi.org/10.1007/s12274-022-5060-5.
[41]

Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Geioushy, R. A.; Li, Y. X.; Liu, Y. X.; Zhou, F. L.; Li, H. T.; Sun, C. H. BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys. 2021, 16, 53503.

[42]

Li, H. T.; Liu, Y. D.; Liu, Y. L.; Wang, L. Z.; Tang, R.; Deng, P. J.; Xu, Z. Q.; Haynes, B.; Sun, C. H.; Huang, J. Efficient visible light driven ammonia synthesis on sandwich structured C3N4/MoS2/Mn3O4 catalyst. Appl. Catal. B:Environ. 2021, 281, 119476.

[43]

Liu, Y. L.; Deng, P. J.; Wu, R. Q.; Zhang, X. L.; Sun, C. H.; Li, H. T. Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction. J. Mater. Chem. A 2021, 9, 6694–6709.

[44]

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem., Int. Ed. 2010, 49, 4430–4434.

[45]

Li, H. T.; He, X. D.; Liu, Y.; Huang, H.; Lian, S. Y.; Lee, S. T.; Kang, Z. H. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 2011, 49, 605–609.

[46]

Cheng, Y. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Wu, R. Q.; Du, Y. C.; Askari, N.; Liu, N. Y.; Qiao, F.; Sun, C. H. et al. A core-satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light. Nano Res. 2022, 15, 8880–8889.

[47]

Wang, G.; Chen, Z.; Wang, T.; Wang, D. S.; Mao, J. J. P and Cu dual sites on graphitic carbon nitride for photocatalytic CO2 reduction to hydrocarbon fuels with high C2H6 evolution. Angew. Chem., Int. Ed. 2022, 61, e202210789.

[48]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[49]

Li, W. H.; Ye, B. C.; Yang, J. R.; Wang, Y.; Yang, C. J.; Pan, Y. M.; Tang, H. T.; Wang, D. S.; Li, Y. D. A single-atom cobalt catalyst for the fluorination of acyl chlorides at parts-per-million catalyst loading. Angew. Chem., Int. Ed. 2022, 61, e202209749.

[50]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[51]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[52]

Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.

File
12274_2022_5338_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 November 2022
Revised: 12 November 2022
Accepted: 15 November 2022
Published: 08 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 52072152 and 51802126); the Jiangsu University Jinshan Professor Fund and the Jiangsu Specially-Appointed Professor Fund; Open Fund from Guangxi Key Laboratory of Electrochemical Energy Materials.

Return