Journal Home > Volume 16 , Issue 6

Enhancing the cut-off voltage of high-nickel layered oxide cathodes is an efficient way to obtain higher energy density of lithium-metal batteries (LMBs). However, the phase transition of the cathode materials and the uncontrolled decomposition of the electrolytes at high voltage can lead to irreversible dissolution of transition metal ions, which might cause the crossover effects on the lithium metal anodes. Nonetheless, the mechanism and electrolyte dependence of the crossover effects for Li metal anodes are still unclear. Herein, we investigate the crossover effects between LiNi0.8Mn0.1Co0.1O2 and Li-metal anode in two electrolyte systems. For ether-based electrolyte, its poor oxidation stability results in massive dissolution of transition metal ions, leading to dendrite growth on anode and rapid cells failure. Conversely, ester-based electrolyte exhibits good electrochemical performances at 4.5 V with little crossover effect. This study provides an idea for electrolyte systems selection for high-voltage LMBs, and verifies that the crossover effect should not be neglected in LMBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Crossover effects of transition metal ions in high-voltage lithium metal batteries

Show Author's information Wanxia Li1,§Yulin Jie1,§Yunhua Chen2Ming Yang3Yawei Chen1Xinpeng Li1Youzhang Guo1Xianhui Meng2Ruiguo Cao1( )Shuhong Jiao1( )
Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
NIO Incorporation, Shanghai 201800, China
Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, China

§ Wanxia Li and Yulin Jie contributed equally to this work.

Abstract

Enhancing the cut-off voltage of high-nickel layered oxide cathodes is an efficient way to obtain higher energy density of lithium-metal batteries (LMBs). However, the phase transition of the cathode materials and the uncontrolled decomposition of the electrolytes at high voltage can lead to irreversible dissolution of transition metal ions, which might cause the crossover effects on the lithium metal anodes. Nonetheless, the mechanism and electrolyte dependence of the crossover effects for Li metal anodes are still unclear. Herein, we investigate the crossover effects between LiNi0.8Mn0.1Co0.1O2 and Li-metal anode in two electrolyte systems. For ether-based electrolyte, its poor oxidation stability results in massive dissolution of transition metal ions, leading to dendrite growth on anode and rapid cells failure. Conversely, ester-based electrolyte exhibits good electrochemical performances at 4.5 V with little crossover effect. This study provides an idea for electrolyte systems selection for high-voltage LMBs, and verifies that the crossover effect should not be neglected in LMBs.

Keywords: crossover effects, lithium-metal batteries, high-nickel layered cathodes, electrolyte systems dependence, transition metals dissolution

References(52)

[1]

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

[2]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[3]

Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.

[4]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[5]

Li, W. D.; Erickson, E. M.; Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 2020, 5, 26–34.

[6]

Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961–969.

[7]

Cao, Y. L.; Li, M.; Lu, J.; Liu, J.; Amine, K. Bridging the academic and industrial metrics for next-generation practical batteries. Nat. Nanotechnol. 2019, 14, 200–207.

[8]

Yu, Z. A.; Rudnicki, P. E.; Zhang, Z. W.; Huang, Z. J.; Celik, H.; Oyakhire, S. T.; Chen, Y. L.; Kong, X.; Kim, S. C.; Xiao, X. et al. Rational solvent molecule tuning for high-performance lithium metal battery electrolytes. Nat. Energy 2022, 7, 94–106.

[9]

Huang, Z. H.; Wei, J. S.; Song, T. B.; Ni, J. W.; Wang, F.; Xiong, H. M. Carbon dots crosslinked gel polymer electrolytes for dendrite-free and long-cycle lithium metal batteries. SmartMat 2022, 3, 323–336.

[10]

Liu, F. F.; Zhang, Z. W.; Ye, S. F.; Yao, Y.; Yu, Y. Challenges and improvement strategies progress of lithium metal anode. Acta Phys.—Chim. Sin. 2020, 37, 2006021.

[11]

Wu, C.; Zhou, Y.; Zhu, X. L.; Zhan, M. Z.; Yang, H. X.; Qian, J. F. Research progress on high concentration electrolytes for Li metal batteries. Acta Phys.—Chim. Sin. 2020, 37, 2008044.

[12]

Wu, M. G.; Li, Y.; Liu, X. H.; Yang, S. C.; Ma, J. M.; Dou, S. X. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat 2021, 2, 5–11.

[13]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[14]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[15]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[16]

Fan, X. L.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C. Y.; Liou, S. C. et al. Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nat. Nanotechnol. 2018, 13, 715–722.

[17]

Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.

[18]

Tan, S.; Shadike, Z.; Li, J. Z.; Wang, X. L.; Yang, Y.; Lin, R. Q.; Cresce, A.; Hu, J. T.; Hunt, A.; Waluyo, I. et al. Additive engineering for robust interphases to stabilize high-Ni layered structures at ultra-high voltage of 4.8 V. Nat. Energy 2022, 7, 484–494.

[19]

Yaghoobnejad Asl, H.; Manthiram, A. Proton-induced disproportionation of Jahn–Teller-active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc. 2020, 142, 21122–21130.

[20]

Liu, S. Q.; Wang, B. Y.; Zhang, X.; Zhao, S.; Zhang, Z. H.; Yu, H. J. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter 2021, 4, 1511–1527.

[21]

Jang, D. H.; Oh, S. M. Electrolyte effects on spinel dissolution and cathodic capacity losses in 4 V Li/LixMn2O4 rechargeable cells. J. Electrochem. Soc. 1997, 144, 3342–3348.

[22]

Son, S. B.; Robertson, D.; Tsai, Y.; Trask, S.; Dunlop, A.; Bloom, I. Systematic study of the cathode compositional dependency of cross-talk behavior in Li-ion battery. J. Electrochem. Soc. 2020, 167, 160508.

[23]

Xia, Y. Y.; Zhou, Y. H.; Yoshio, M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J. Electrochem. Soc. 1997, 144, 2593–2600.

[24]

Aurbach, D.; Levi, M. D.; Gamulski, K.; Markovsky, B.; Salitra, G.; Levi, E.; Heider, U.; Heider, L.; Oesten, R. Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques. J. Power Sources 1999, 81–82, 472–479.

[25]

Zhan, C.; Wu, T. P.; Lu, J.; Amine, K. Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes—A critical review. Energy Environ. Sci. 2018, 11, 243–257.

[26]

Langdon, J.; Manthiram, A. Crossover effects in batteries with high-nickel cathodes and lithium-metal anodes. Adv. Funct. Mater. 2021, 31, 2010267.

[27]

Zhang, J. P.; Xue, L. L.; Li, Y. J.; Lei, T. X.; Deng, S. Y.; Chen, Y. X.; Zhu, J.; Wang, S. L.; Guo, J. Suppressing nickel dissolution in Ni-rich layered oxide cathodes using NiF2 as electrolyte additive. ChemElectroChem 2019, 6, 3125–3131.

[28]

Xu, H. Y.; Li, Z. P.; Liu, T. C.; Han, C.; Guo, C.; Zhao, H.; Li, Q.; Lu, J.; Amine, K.; Qiu, X. P. Impacts of dissolved Ni2+ on the solid electrolyte interphase on a graphite anode. Angew. Chem., Int. Ed. 2022, 61, e202202894.

[29]

Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

[30]

Weber, R.; Genovese, M.; Louli, A. J.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J. R. Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nat. Energy 2019, 4, 683–689.

[31]

Han, Y. H.; Jie, Y. L.; Huang, F. Y.; Chen, Y. W.; Lei, Z. W.; Zhang, G. Q.; Ren, X. D.; Qin, L. J.; Cao, R. G.; Jiao, S. H. Enabling stable lithium metal anode through electrochemical kinetics manipulation. Adv. Funct. Mater. 2019, 29, 1904629.

[32]

Hou, J. B.; Yang, M.; Wang, D. Y.; Zhang, J. L. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 °C. Adv. Energy Mater. 2020, 10, 1904152.

[33]

Kang, D. M.; Hart, N.; Xiao, M. Y.; Lemmon, J. P. Short circuit of symmetrical Li/Li cell in Li metal anode research. Acta Phys.—Chim. Sin. 2020, 37, 2008013.

[34]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[35]

Grey, C. P.; Tarascon, J. M. Sustainability and in situ monitoring in battery development. Nat. Mater. 2017, 16, 45–56.

[36]

Jiao, S. H.; Ren, X. D.; Cao, R. G.; Engelhard, M. H.; Liu, Y. Z.; Hu, D. H.; Mei, D. H.; Zheng, J. M.; Zhao, W. G.; Li, Q. Y. et al. Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nat. Energy 2018, 3, 739–746.

[37]

Evertz, M.; Horsthemke, F.; Kasnatscheew, J.; Börner, M.; Winter, M.; Nowak, S. Unraveling transition metal dissolution of Li1.04Ni1/3Co1/3Mn1/3O2 (NCM 111) in lithium ion full cells by using the total reflection X-ray fluorescence technique. J. Power Sources 2016, 329, 364–371.

[38]

Klein, S.; van Wickeren, S.; Röser, S.; Bärmann, P.; Borzutzki, K.; Heidrich, B.; Börner, M.; Winter, M.; Placke, T.; Kasnatscheew, J. Understanding the outstanding high-voltage performance of NCM523| | graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte. Adv. Energy Mater. 2021, 11, 2003738.

[39]

Tan, L. J.; Chen, S. Q.; Chen, Y. W.; Fan, J. J.; Ruan, D. G.; Nian, Q. S.; Chen, L.; Jiao, S. H.; Ren, X. D. Intrinsic nonflammable ether electrolytes for ultrahigh-voltage lithium metal batteries enabled by chlorine functionality. Angew. Chem., Int. Ed. 2022, 61, e202203693.

[40]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[41]

Waqas, M.; Ali, S.; Feng, C.; Chen, D. J.; Han, J. C.; He, W. D. Recent development in separators for high-temperature lithium-ion batteries. Small 2019, 15, e1901689.

[42]

Strehle, B.; Friedrich, F.; Gasteiger, H. A. A comparative study of structural changes during long-term cycling of NCM-811 at ambient and elevated temperatures. J. Electrochem. Soc. 2021, 168, 050512.

[43]

Amine, K.; Liu, J.; Belharouak, I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochem. Commun. 2005, 7, 669–673.

[44]

Aryanfar, A.; Brooks, D. J.; Colussi, A. J.; Merinov, B. V.; Goddard III, W. A.; Hoffmann, M. R. Thermal relaxation of lithium dendrites. Phys. Chem. Chem. Phys. 2015, 17, 8000–8005.

[45]

Xu, G. L.; Liu, Q.; Lau, K. K. S.; Liu, Y. Z.; Liu, X.; Gao, H.; Zhou, X. W.; Zhuang, M. H.; Ren, Y.; Li, J. D. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494.

[46]

Xue, W. J.; Huang, M. J.; Li, Y. T.; Zhu, Y. G.; Gao, R.; Xiao, X. H.; Zhang, W. X.; Li, S. P.; Xu, G. Y.; Yu, Y. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 2021, 6, 495–505.

[47]

Chen, H. Y.; Chen, J. W.; Zhang, W. G.; Xie, Q. M.; Che, Y. X.; Wang, H. R.; Xing, L. D.; Xu, K.; Li, W. S. Enhanced cycling stability of high-voltage lithium metal batteries with a trifunctional electrolyte additive. J. Mater. Chem. A 2020, 8, 22054–22064.

[48]

Zhan, C.; Lu, J.; Jeremy Kropf, A.; Wu, T. P.; Jansen, A. N.; Sun, Y. K.; Qiu, X. P.; Amine, K. Mn(II) deposition on anodes and its effects on capacity fade in spinel lithium manganate-carbon systems. Nat. Commun. 2013, 4, 2437.

[49]

Zhang, X. H.; Cui, Z. H.; Manthiram, A. Insights into the crossover effects in cells with high-nickel layered oxide cathodes and silicon/graphite composite anodes. Adv. Energy Mater. 2022, 12, 2103611.

[50]

Qian, J. F.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. High rate and stable cycling of lithium metal anode. Nat. Commun. 2015, 6, 6362.

[51]

Yin, X. S.; Tang, W.; Jung, I. D.; Phua, K. C.; Adams, S.; Lee, S. W.; Zheng, G. W. Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure. Nano Energy 2018, 50, 659–664.

[52]

Fang, C. C.; Lu, B. Y.; Pawar, G.; Zhang, M. H.; Cheng, D. Y.; Chen, S. R.; Ceja, M.; Doux, J. M.; Musrock, H.; Cai, M. et al. Pressure-tailored lithium deposition and dissolution in lithium metal batteries. Nat. Energy 2021, 6, 987–994.

File
5334_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 August 2022
Revised: 06 November 2022
Accepted: 16 November 2022
Published: 13 December 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51902304, 52072358, U21A2082, 22279127, and 52225105). This work was supported by NIO Research Program (NRP). The authors would like to thank Neware (China) for supporting battery testing.

Return