Journal Home > Volume 16 , Issue 5

Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries (LIBs) due to their high specific capacity, high voltage, and low cost. However, their commercialization is hindered by limited cycle life and poor rate performance. Herein, an in-situ simple and low-cost strategy with a nanoscale double-layer architecture of lithium polyphosphate (LiPP) and spinel phase covered on top of the bulk layered phase, is developed for Li1.2Mn0.6Ni0.2O2 (LMNO) using Li+-conductor LiPP (denoted as LMNO@S-LiPP). With such a double-layer covered architecture, the half-cell of LMNO@S-LiPP delivers an extremely high capacity of 202.5 mAh·g−1 at 1 A·g−1 and retains 85.3% of the initial capacity after 300 cycles, so far, the best high-rate electrochemical performance of all the previously reported LMNOs. The energy density of the full-cell assembled with commercial graphite reaches 620.9 Wh·kg−1 (based on total weight of active materials in cathode and anode). Mechanism studies indicate that the superior electrochemical performance of LMNO@S-LiPP is originated from such a nanoscale double-layer covered architecture, which accelerates Li-ion diffusion, restrains oxygen release, inhibits interfacial side reactions, and suppresses structural degradation during cycling. Moreover, this strategy is applicable for other high-energy-density cathodes, such as LiNi0.8Co0.1Mn0.1O2, Li1.2Ni0.13Co0.13Mn0.54O2, and LiCoO2. Hence, this work presents a simple, cost-effective, and scalable strategy for the development of high-performance cathode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A double-layer covered architecture with spinel phase induced by LiPP for Co-free Li-rich cathode with high-rate performance and long lifespan

Show Author's information Ruiqi Zhao1,3Manman Wu1,2,3Peixin Jiao3,4,5Xueting Wang1,3Jie Zhu1,3Yang Zhao1,3Hongtao Zhang1,3( )Kai Zhang3,4,5Chenxi Li1,3Yanfeng Ma1,3Yongsheng Chen1,2,3( )
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin 300071, China
Department Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
Engineering Research Center of High-efficiency Energy Storage (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China

Abstract

Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries (LIBs) due to their high specific capacity, high voltage, and low cost. However, their commercialization is hindered by limited cycle life and poor rate performance. Herein, an in-situ simple and low-cost strategy with a nanoscale double-layer architecture of lithium polyphosphate (LiPP) and spinel phase covered on top of the bulk layered phase, is developed for Li1.2Mn0.6Ni0.2O2 (LMNO) using Li+-conductor LiPP (denoted as LMNO@S-LiPP). With such a double-layer covered architecture, the half-cell of LMNO@S-LiPP delivers an extremely high capacity of 202.5 mAh·g−1 at 1 A·g−1 and retains 85.3% of the initial capacity after 300 cycles, so far, the best high-rate electrochemical performance of all the previously reported LMNOs. The energy density of the full-cell assembled with commercial graphite reaches 620.9 Wh·kg−1 (based on total weight of active materials in cathode and anode). Mechanism studies indicate that the superior electrochemical performance of LMNO@S-LiPP is originated from such a nanoscale double-layer covered architecture, which accelerates Li-ion diffusion, restrains oxygen release, inhibits interfacial side reactions, and suppresses structural degradation during cycling. Moreover, this strategy is applicable for other high-energy-density cathodes, such as LiNi0.8Co0.1Mn0.1O2, Li1.2Ni0.13Co0.13Mn0.54O2, and LiCoO2. Hence, this work presents a simple, cost-effective, and scalable strategy for the development of high-performance cathode materials.

Keywords: long cycle life, Co-free Li-rich layered oxides, double-layer covered architecture, lithium polyphosphate, high-rate performance

References(75)

[1]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[2]

Murdock, B. E.; Toghill, K. E.; Tapia-Ruiz, N. A perspective on the sustainability of cathode materials used in lithium-ion batteries. Adv. Energy Mater. 2021, 11, 2102028.

[3]

Huang, A. M.; Ma, Y. C.; Peng, J.; Li, L. L.; Chou, S. L.; Ramakrishna, S.; Peng, S. J. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology. eScience 2021, 1, 141–162.

[4]

Wu, M. M.; Zhao, Y.; Zhang, H. T.; Zhu, J.; Ma, Y. F.; Li, C. X.; Zhang, Y. M.; Chen, Y. S. A 2D covalent organic framework with ultra-large interlayer distance as high-rate anode material for lithium-ion batteries. Nano Res. 2022, 15, 9779–9784.

[5]

Wang, J.; He, X.; Paillard, E.; Laszczynski, N.; Li, J.; Passerini, S. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv. Energy Mater. 2016, 6, 1600906.

[6]

Zheng, J. M.; Myeong, S.; Cho, W.; Yan, P. F.; Xiao, J.; Wang, C. M.; Cho, J.; Zhang, J. G. Li- and Mn-rich cathode materials: Challenges to commercialization. Adv. Energy Mater. 2017, 7, 1601284.

[7]

He, W.; Guo, W. B.; Wu, H. L.; Lin, L.; Liu, Q.; Han, X.; Xie, Q. S.; Liu, P. F.; Zheng, H. F.; Wang, L. S. et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937.

[8]

Assat, G.; Tarascon, J. M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 2018, 3, 373–386.

[9]

Zuo, W. H.; Luo, M. Z.; Liu, X. S.; Wu, J.; Liu, H. D.; Li, J.; Winter, M.; Fu, R. Q.; Yang, W. L.; Yang, Y. Li-rich cathodes for rechargeable Li-based batteries: Reaction mechanisms and advanced characterization techniques. Energy Environ. Sci. 2020, 13, 4450–4497.

[10]

Zhang, H. L.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. W. Oxygen loss in layered oxide cathodes for Li-ion batteries: Mechanisms, effects, and mitigation. Chem. Rev. 2022, 122, 5641–5681.

[11]

Eum, D.; Kim, B.; Kim, S. J.; Park, H.; Wu, J. P.; Cho, S. P.; Yoon, G.; Lee, M. H.; Jung, S. K.; Yang, W. L. et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat. Mater. 2020, 19, 419–427.

[12]

Zheng, J. M.; Shi, W.; Gu, M.; Xiao, J.; Zuo, P. J.; Wang, C. M.; Zhang, J. G. Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2. J. Electrochem. Soc. 2013, 160, A2212.

[13]

Yu, X. Q.; Lyu, Y.; Gu, L.; Wu, H. M.; Bak, S. M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K. W. et al. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 2014, 4, 1300950.

[14]

Zhao, H.; Lam, W. Y. A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D. S.; Xu, H.; He, X. M. Cobalt-free cathode materials: Families and their prospects. Adv. Energy Mater. 2022, 12, 2103894.

[15]

Zhang, X. F.; Belharouak, I.; Li, L.; Lei, Y.; Elam, J. W.; Nie, A. M.; Chen, X. Q.; Yassar, R. S.; Axelbaum, R. L. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 2013, 3, 1299–1307.

[16]

Liu, H. D.; Qian, D. N.; Verde, M. G.; Zhang, M. H.; Baggetto, L.; An, K.; Chen, Y.; Carroll, K. J.; Lau, D.; Chi, M. F. et al. Understanding the role of NH4F and Al2O3 surface co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2. ACS Appl. Mater. Interfaces 2015, 7, 19189–19200.

[17]

Zhang, C. X.; Feng, Y. Z.; Wei, B.; Liang, C. P.; Zhou, L. J.; Ivey, D. G.; Wang, P.; Wei, W. F. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy 2020, 75, 104995.

[18]

Zheng, J. M.; Gu, M.; Xiao, J.; Polzin, B. J.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Zhang, J. G. Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials. Chem. Mater. 2014, 26, 6320–6327.

[19]

Zhu, W.; Tai, Z. G.; Shu, C. Y.; Chong, S. K.; Guo, S. W.; Ji, L. J.; Chen, Y. Z.; Liu, Y. N. The superior electrochemical performance of a Li-rich layered cathode material with Li-rich spinel Li4Mn5O12 and MgF2 double surface modifications. J. Mater. Chem. A 2020, 8, 7991–8001.

[20]

Zhao, H.; Li, W. T.; Li, J. X.; Xu, H. Y.; Zhang, C.; Li, J.; Han, C.; Li, Z. L.; Chu, M.; Qiu, X. P. Enhance performances of Co-free Li-rich cathode by eutesctic melting salt treatment. Nano Energy 2022, 92, 106760.

[21]

Ma, Y. T.; Liu, P. F.; Xie, Q. S.; Zhang, G. B.; Zheng, H. F.; Cai, Y. X.; Li, Z.; Wang, L. S.; Zhu, Z. Z.; Mai, L. Q. et al. Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. Nano Energy 2019, 59, 184–196.

[22]

Si, M. T.; Wang, D. D.; Zhao, R.; Pan, D.; Zhang, C.; Yu, C. Y.; Lu, X.; Zhao, H. L.; Bai, Y. Local electric-field-driven fast Li diffusion kinetics at the piezoelectric LiTaO3 modified Li-rich cathode-electrolyte interphase. Adv. Sci. 2020, 7, 1902538.

[23]

Zhao, E. Y.; Liu, X. F.; Hu, Z. B.; Sun, L. M.; Xiao, X. L. Facile synthesis and enhanced electrochemical performances of Li2TiO3-coated lithium-rich layered Li1.13Ni0.30Mn0.57O2 cathode materials for lithium-ion batteries. J. Power Sources 2015, 294, 141–149.

[24]

Lee, Y.; Lee, J.; Lee, K. Y.; Mun, J.; Lee, J. K.; Choi, W. Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries. J. Power Sources 2016, 315, 284–293.

[25]

Guo, W. B.; Zhang, C. Y.; Zhang, Y. G.; Lin, L.; He, W.; Xie, Q. S.; Sa, B.; Wang, L. S.; Peng, D. L. A universal strategy toward the precise regulation of initial coulombic efficiency of Li-rich Mn-based cathode materials. Adv. Mater. 2021, 33, 2103173.

[26]

Zhu, X. H.; Meng, F. Q.; Zhang, Q. H.; Xue, L.; Zhu, H.; Lan, S.; Liu, Q.; Zhao, J.; Zhuang, Y. H.; Guo, Q. B. et al. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat. Sustain. 2021, 4, 392–401.

[27]

Liu, J. X.; Wang, J. Q.; Ni, Y. X.; Zhang, Y. D.; Luo, J.; Cheng, F. Y.; Chen, J. Spinel/lithium-rich manganese oxide hybrid nanofibers as cathode materials for rechargeable lithium-ion batteries. Small Methods 2019, 3, 1900350.

[28]

Liu, P. F.; Zhang, H.; He, W.; Xiong, T. F.; Cheng, Y.; Xie, Q. S.; Ma, Y. T.; Zheng, H. F.; Wang, L. S.; Zhu, Z. Z. et al. Lithium deficiencies engineering in Li-rich layered oxide Li1.098Mn0.533Ni0.113Co0.138O2 for high-stability cathode. J. Am. Chem. Soc. 2019, 141, 10876–10882.

[29]

Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Zhang, J. N.; Yu, X. Q.; Guo, Y. G. Suppressing surface lattice oxygen release of Li-rich cathode materials via heterostructured spinel Li4Mn5O12 coating. Adv. Mater. 2018, 30, 1801751.

[30]

Zhu, Y. F.; Xiao, Y.; Dou, S. X.; Kang, Y. M.; Chou, S. L. Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries. eScience 2021, 1, 13–27.

[31]

Zhu, A. P.; Wu, J. H.; Wang, B. Y.; Zhou, J. W.; Zhang, Y.; Guo, Y.; Wu, K. P.; Wu, H.; Wang, Q.; Zhang, Y. Harmonious dual-riveting interface induced from niobium oxides coating toward superior stability of Li-rich Mn-based cathode. ACS Appl. Mater. Interfaces 2021, 13, 61248–61257.

[32]

Li, Q. Y.; Zhou, D.; Zhang, L. J.; Ning, D.; Chen, Z. H.; Xu, Z. J.; Gao, R.; Liu, X. Z.; Xie, D. H.; Schumacher, G. et al. Tuning anionic redox activity and reversibility for a high-capacity Li-rich Mn-based oxide cathode via an integrated strategy. Adv. Funct. Mater. 2019, 29, 1806706.

[33]

Xiao, Y. H.; Miara, L. J.; Wang, Y.; Ceder, G. Computational screening of cathode coatings for solid-state batteries. Joule 2019, 3, 1252–1275.

[34]

Du, Y. H.; Sheng, H.; Meng, X. H.; Zhang, X. D.; Zou, Y. G.; Liang, J. Y.; Fan, M.; Wang, F. Y.; Tang, J. L.; Cao, F. F. et al. Chemically converting residual lithium to a composite coating layer to enhance the rate capability and stability of single-crystalline Ni-rich cathodes. Nano Energy 2022, 94, 106901.

[35]

Xu, L. Q.; Sun, Z. H.; Zhu, Y.; Han, Y.; Wu, M. M.; Ma, Y. F.; Huang, Y.; Zhang, H. T.; Chen, Y. S. A Li-rich layered-spinel cathode material for high capacity and high rate lithium-ion batteries fabricated via a gas-solid reaction. Sci. China Mater. 2020, 63, 2435–2442.

[36]

Sun, Z. H.; Xu, L. Q.; Dong, C. Q.; Zhang, H. T.; Zhang, M. T.; Ma, Y. F.; Liu, Y. Y.; Li, Z. J.; Zhou, Y.; Han, Y. et al. A facile gaseous sulfur treatment strategy for Li-rich and Ni-rich cathode materials with high cycling and rate performance. Nano Energy 2019, 63, 103887.

[37]

Meng, J. X.; Xu, L. S.; Ma, Q. X.; Yang, M. Q.; Fang, Y. Z.; Wan, G. Y.; Li, R. H.; Yuan, J. J.; Zhang, X. K.; Yu, H. J. et al. Modulating crystal and interfacial properties by W-gradient doping for highly stable and long life Li-rich layered cathodes. Adv. Funct. Mater. 2022, 32, 2113013.

[38]

Zheng, H. F.; Zhang, C. Y.; Zhang, Y. G.; Lin, L.; Liu, P. F.; Wang, L. S.; Wei, Q. L.; Lin, J.; Sa, B.; Xie, Q. S. et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance. Adv. Funct. Mater. 2021, 31, 2100783.

[39]

Luo, D.; Ding, X. K.; Hao, X. D.; Xie, H. X.; Cui, J. X.; Liu, P. Z.; Yang, X. H.; Zhang, Z. H.; Guo, J. J.; Sun, S. H. et al. Ni/Mn and Al dual concentration-gradients to mitigate voltage decay and capacity fading of Li-rich layered cathodes. ACS Energy Lett. 2021, 6, 2755–2764.

[40]

Cai, Y. X.; Ku, L.; Wang, L. S.; Ma, Y. T.; Zheng, H. F.; Xu, W. J.; Han, J. T.; Qu, B. H.; Chen, Y. Z.; Xie, Q. S. et al. Engineering oxygen vacancies in hierarchically Li-rich layered oxide porous microspheres for high-rate lithium ion battery cathode. Sci. China Mater. 2019, 62, 1374–1384.

[41]

Lee, M. J.; Lho, E.; Oh, P.; Son, Y.; Cho, J. Simultaneous surface modification method for 0.4Li2MnO3-0.6LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries:Acid treatment and LiCoPO4 coating. Nano Res. 2017, 10, 4210–4220.

[42]

Peng, J. M.; Li, Y.; Chen, Z. Q.; Liang, G. M.; Hu, S. J.; Zhou, T. F.; Zheng, F. H.; Pan, Q. C.; Wang, H. Q.; Li, Q. Y. et al. Phase compatible NiFe2O4 coating tunes oxygen redox in Li-rich layered oxide. ACS Nano 2021, 15, 11607–11618.

[43]

Sun, J. M.; Sheng, C. C.; Cao, X.; Wang, P. F.; He, P.; Yang, H. J.; Chang, Z.; Yue, X. Y.; Zhou, H. S. Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Adv. Funct. Mater. 2022, 32, 2110295.

[44]

Zhang, X. D.; Shi, J. L.; Liang, J. Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization. Sci. China Chem. 2017, 60, 1554–1560.

[45]

Ruther, R. E.; Callender, A. F.; Zhou, H.; Martha, S. K.; Nanda, J. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes. J. Electrochem. Soc. 2015, 162, A98.

[46]

Lanz, P.; Villevieille, C.; Novák, P. Ex situ and in situ Raman microscopic investigation of the differences between stoichiometric LiMO2 and high-energy xLi2MnO3·(1 − x)LiMO2 (M = Ni, Co, Mn). Electrochim. Acta 2014, 130, 212.

[47]

Huang, W. W.; Frech, R. In situ Raman spectroscopic studies of electrochemical intercalation in LixMn2O4-based cathodes. J. Power Sources 1999, 81–82, 616–620.

[48]

Ding, X. K.; Luo, D.; Cui, J. X.; Xie, H. X.; Ren, Q. Q.; Lin, Z. An ultra-long-life lithium-rich Li1.2Mn0. 6Ni0. 2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 7778–7782.

[49]

Johnson, C. S.; Li, N.; Lefief, C.; Vaughey, J. T.; M. Thackeray, M. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 2008, 20, 6095–6106.

[50]

Li, Q. Y.; Ning, D.; Zhou, D.; An, K.; Schuck, G.; Wong, D.; Kong, W. J.; Schulz, C.; Schumacher, G.; Liu, X. F. Tuning both anionic and cationic redox chemistry of Li-Rich Li1.2Mn0.6Ni0.2O2 via a “Three-in-One” Strategy. Chem. Mater. 2020, 32, 9404–9414.

[51]

Chen, Q.; Pei, Y.; Chen, H. W.; Song, Y.; Zhen, L.; Xu, C. Y.; Xiao, P. H.; Henkelman, G. Highly reversible oxygen redox in layered compounds enabled by surface polyanions. Nat. Commun. 2020, 11, 3411.

[52]

Vu, N. H.; Im, J. C.; Unithrattil, S.; Im, W. B. Synergic coating and doping effects of Ti-modified integrated layered-spinel Li1.2Mn0.75Ni0. 25O2+δ as a high capacity and long lifetime cathode material for Li-ion batteries. J. Mater. Chem. A 2018, 6, 2200–2211.

[53]

Li, L.; Wang, L. C.; Zhang, X. X.; Xue, Q.; Wei, L.; Wu, F.; Chen, R. J. 3D reticular Li1.2Ni0.2Mn0.6O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 1516–1523.

[54]

Hua, W. B.; Wu, Z. G.; Chen, M. Z.; Knapp, M.; Guo, X. D.; Indris, S.; Binder, J. R.; Bramnik, N. N.; Zhong, B. H.; Guo, H. P. et al. Shape-controlled synthesis of hierarchically layered lithium transition-metal oxide cathode materials by shear exfoliation in continuous stirred-tank reactors. J. Mater. Chem. A 2017, 5, 25391–25400.

[55]

Zhao, T. L.; Li, L.; Chen, R. J.; Wu, H. M.; Zhang, X. X.; Chen, S.; Xie, M.; Wu, F.; Lu, J.; Amine, K. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 2015, 15, 164–176.

[56]

Liu, Y. C.; Wang, J.; Wu, J. W.; Ding, Z. Y.; Yao, P. H.; Zhang, S. L.; Chen, Y. A. 3D cube-maze-like Li-rich layered cathodes assembled from 2D porous nanosheets for enhanced cycle stability and rate capability of lithium-ion batteries. Adv. Energy Mater. 2020, 10, 1903139.

[57]

Yang, X. R.; Wang, C. W.; Yan, P. F.; Jiao, T. P.; Hao, J. L.; Jiang, Y. Y.; Ren, F. C.; Zhang, W. G.; Zheng, J. M.; Cheng, Y. et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv. Energy Mater. 2022, 12, 2200197.

[58]

Wang, E. R.; Xiao, D. D.; Wu, T. H.; Liu, X. S.; Zhou, Y. N.; Wang, B. Y.; Lin, T.; Zhang, X.; Yu, H. J. Al/Ti synergistic doping enhanced cycle stability of Li-rich layered oxides. Adv. Funct. Mater. 2022, 32, 2201744.

[59]

Zhu, Z.; Gao, R.; Waluyo, I.; Dong, Y. H.; Hunt, A.; Lee, J.; Li, J. Stabilized Co-free Li-rich oxide cathode particles with an artificial surface prereconstruction. Adv. Energy Mater. 2020, 10, 2001120.

[60]

Zhang, J. C.; Zhang, Q. H.; Wong, D.; Zhang, N.; Ren, G. X.; Gu, L.; Schulz, C.; He, L. H.; Yu, Y.; Liu, X. F. Addressing voltage decay in Li-rich cathodes by broadening the gap between metallic and anionic bands. Nat. Commun. 2021, 12, 3071.

[61]

Wang, Y.; Wang, Z. X.; Wu, D. X.; Niu, Q. H.; Lu, P. S.; Ma, T. H.; Su, Y. B.; Chen, L. Q.; Li, H.; Wu, F. Stable Ni-rich layered oxide cathode for sulfide-based all-solid-state lithium battery. eScience 2022, 2, 537–545.

[62]

Han, J. G.; Lee, J. B.; Cha, A.; Lee, T. K.; Cho, W.; Chae, S.; Kang, S. J.; Kwak, S. K.; Cho, J.; Hong, S. Y. et al. Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy Environ. Sci. 2018, 11, 1552–1562.

[63]

Mu, P. Z.; Zhang, H. R.; Jiang, H. Z.; Dong, T. T.; Zhang, S.; Wang, C.; Li, J. D.; Ma, Y.; Dong, S. M.; Cui, G. L. Bioinspired antiaging binder additive addressing the challenge of chemical degradation of electrolyte at cathode/electrolyte interphase. J. Am. Chem. Soc. 2021, 143, 18041–18051.

[64]

Andersson, A. M.; Abraham, D. P.; Haasch, R.; MacLaren, S.; Liu, J.; Amine, K. Surface characterization of electrodes from high power lithium-ion batteries. J. Electrochem. Soc. 2002, 149, A1358.

[65]

Zhang, F. L.; Zhou, X. A.; Fu, X. L.; Wang, C.; Wang, B.; Liang, W. B.; Wang, P.; Huang, J.; Li, S. Y. Which is the winner between the single-crystalline and polycrystalline LiNi0.80Co0.15Al0.05O2 cathode in the lithium-ion battery? Mater. Today Energy 2021, 22, 100873.

[66]

Wu, S. X.; Yang, Y. J.; Liu, C. B.; Liu, T. F.; Zhang, Y. P.; Zhang, B. K.; Luo, D.; Pan, F.; Lin, Z. In-situ polymerized binder: A three-in-one design strategy for all-integrated SiOx anode with high mass loading in lithium ion batteries. ACS Energy Lett. 2021, 6, 290–297.

[67]

Aurbach, D.; Zaban, A.; Ein-Eli, Y.; Weissman, I.; Chusid, O.; Markovsky, B.; Levi, M.; Levi, E.; Schechter, A.; Granot, E. Recent studies on the correlation between surface chemistry, morphology, three-dimensional structures and performance of Li and Li-C intercalation anodes in several important electrolyte systems. J. Power Sources 1997, 68, 91–98.

[68]

Kawamura, T.; Okada, S.; Yamaki, J. I. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells. J. Power Sources 2006, 156, 547–554.

[69]

Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.

[70]

Luo, D.; Cui, J. X.; Zhang, B. K.; Fan, J. M.; Liu, P. Z.; Ding, X. K.; Xie, H. X.; Zhang, Z. H.; Guo, J. J.; Pan, F. et al. Ti-based surface integrated layer and bulk doping for stable voltage and long life of Li-rich layered cathodes. Adv. Funct. Mater. 2021, 31, 2009310.

[71]

Li, Q. Y.; Ning, D.; Zhou, D.; An, K.; Wong, D.; Zhang, L. J.; Chen, Z. H.; Schuck, G.; Schulz, C.; Xu, Z. J. et al. The effect of oxygen vacancy and spinel phase integration on both anionic and cationic redox in Li-rich cathode materials. J. Mater. Chem. A 2020, 8, 7733–7745.

[72]

Bao, L. Y.; Wei, L.; Fu, N. T.; Dong, J. Y.; Chen, L.; Su, Y. F.; Li, N.; Lu, Y.; Li, Y. J.; Chen, S. et al. Urea-assisted mixed gas treatment on Li-rich layered oxide with enhanced electrochemical performance. J. Energy Chem. 2022, 66, 123–132.

[73]

Yang, J. C.; Chen, Y. X.; Li, Y. J.; Xi, X. M.; Zheng, J. C.; Zhu, Y. L.; Xiong, Y. K.; Liu, S. W. Encouraging voltage stability upon long cycling of Li-rich Mn-based cathode materials by Ta-Mo dual doping. ACS Appl. Mater. Interfaces 2021, 13, 25981–25992.

[74]

Yu, R. Z.; Wang, X. Y.; Fu, Y. Q.; Wang, L. W.; Cai, S. Y.; Liu, M. H.; Lu, B.; Wang, G.; Wang, D.; Ren, Q. F. et al. Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. J. Mater. Chem. A 2016, 4, 4941–4951.

[75]

Ni, L. S.; Guo, R. T.; Fang, S. S.; Chen, J.; Gao, J. Q.; Mei, Y.; Zhang, S.; Deng, W. T.; Zou, G. Q.; Hou, H. S. et al. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode. eScience 2022, 2, 116–124.

File
12274_2022_5333_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 August 2022
Revised: 05 November 2022
Accepted: 16 November 2022
Published: 06 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the Ministry of Science and Technology of China (MoST, No. 52090034) and the Higher Education Discipline Innovation Project (No. B12015).

Return