Journal Home > Volume 16 , Issue 5

Co-free Li-rich Mn-based layered oxides are promising candidates for next-generation lithium-ion batteries (LIBs) due to their high specific capacity, high voltage, and low cost. However, their commercialization is hindered by limited cycle life and poor rate performance. Herein, an in-situ simple and low-cost strategy with a nanoscale double-layer architecture of lithium polyphosphate (LiPP) and spinel phase covered on top of the bulk layered phase, is developed for Li1.2Mn0.6Ni0.2O2 (LMNO) using Li+-conductor LiPP (denoted as LMNO@S-LiPP). With such a double-layer covered architecture, the half-cell of LMNO@S-LiPP delivers an extremely high capacity of 202.5 mAh·g−1 at 1 A·g−1 and retains 85.3% of the initial capacity after 300 cycles, so far, the best high-rate electrochemical performance of all the previously reported LMNOs. The energy density of the full-cell assembled with commercial graphite reaches 620.9 Wh·kg−1 (based on total weight of active materials in cathode and anode). Mechanism studies indicate that the superior electrochemical performance of LMNO@S-LiPP is originated from such a nanoscale double-layer covered architecture, which accelerates Li-ion diffusion, restrains oxygen release, inhibits interfacial side reactions, and suppresses structural degradation during cycling. Moreover, this strategy is applicable for other high-energy-density cathodes, such as LiNi0.8Co0.1Mn0.1O2, Li1.2Ni0.13Co0.13Mn0.54O2, and LiCoO2. Hence, this work presents a simple, cost-effective, and scalable strategy for the development of high-performance cathode materials.

File
12274_2022_5333_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 August 2022
Revised: 05 November 2022
Accepted: 16 November 2022
Published: 06 February 2023
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the Ministry of Science and Technology of China (MoST, No. 52090034) and the Higher Education Discipline Innovation Project (No. B12015).

Return