Journal Home > Volume 16 , Issue 5

Photocatalytic hydrogen (H2) production from seawater over a photocatalyst is of great significance for the utilization of theearth’s abundant seawater resources and the storage of inexhaustible solar energy with low-energy density. However, the designation of efficient photocatalytic systems by using seawater usually suffers from activation decline when replacing pure water with seawater. Herein, we synthesized three β-ketoenamine-linked covalent organic frameworks (COFs), demonstrating their promotion in the photocatalytic decomposition of seawater relative to pure water under visible-light irradiation. The target COFs were synthesized via a microwave assisted solvothermal method by using 1,3,5-triformylphloroglucinol (Tp) as the aldehyde monomer to react with diamino units with different numbers of benzene rings. By surveying the building blocks, the constructed COF with a high density of β-ketoenamine units exhibited the so far highest photocatalytic H2 evolution rate (41.3 mmol·g−1·h−1) in seawater, about 1.66 times higher than that in pure water. The β-ketoenamine units allowed the in-situ polarization of the COF framework through the adsorption of metal salts when proceeding with the photocatalytic H2 production in seawater. This polarization effect significantly increases the dielectric constant of the organic semiconductor to lower exciton dissociation energy and thus enhances the charge separation and transfer to promote the H2 photoproduction in seawater.


menu
Abstract
Full text
Outline
About this article

In-situ polarization of covalent organic frameworks in seawater enables enhanced photocatalytic hydrogen evolution under visible-light irradiation

Show Author's information Qihong Yue§Guoqing Li§Ping FuBiao MengFangpei MaYu Zhou( )Jun Wang( )
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

§ Qihong Yue and Guoqing Li contributed equally to this work.

Abstract

Photocatalytic hydrogen (H2) production from seawater over a photocatalyst is of great significance for the utilization of theearth’s abundant seawater resources and the storage of inexhaustible solar energy with low-energy density. However, the designation of efficient photocatalytic systems by using seawater usually suffers from activation decline when replacing pure water with seawater. Herein, we synthesized three β-ketoenamine-linked covalent organic frameworks (COFs), demonstrating their promotion in the photocatalytic decomposition of seawater relative to pure water under visible-light irradiation. The target COFs were synthesized via a microwave assisted solvothermal method by using 1,3,5-triformylphloroglucinol (Tp) as the aldehyde monomer to react with diamino units with different numbers of benzene rings. By surveying the building blocks, the constructed COF with a high density of β-ketoenamine units exhibited the so far highest photocatalytic H2 evolution rate (41.3 mmol·g−1·h−1) in seawater, about 1.66 times higher than that in pure water. The β-ketoenamine units allowed the in-situ polarization of the COF framework through the adsorption of metal salts when proceeding with the photocatalytic H2 production in seawater. This polarization effect significantly increases the dielectric constant of the organic semiconductor to lower exciton dissociation energy and thus enhances the charge separation and transfer to promote the H2 photoproduction in seawater.

Keywords: photocatalysis, hydrogen evolution reaction, covalent organic frameworks, seawater polarization

References(58)

[1]

Zhang, L. Y.; Zhang, J. J.; Yu, H. G.; Yu, J. G. Emerging S-scheme photocatalyst. Adv. Mater. 2022, 34, 2107668.

[2]

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

[3]

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Y. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

[4]

Banerjee, T.; Podjaski, F.; Kröger, J.; Biswal, B. P.; Lotsch, B. V. Polymer photocatalysts for solar-to-chemical energy conversion. Nat. Rev. Mater. 2021, 6, 168–190.

[5]

Xu, H.; She, X. J.; Fei, T.; Song, Y. H.; Liu, D. B.; Li, H. P.; Yang, X. F.; Yang, J. M.; Li, H. M.; Song, L.; Ajayan, P. M.; Wu, J. J. Metal-oxide-mediated subtractive manufacturing of two-dimensional carbon nitride for high-efficiency and high-yield photocatalytic H2 evolution. ACS Nano 2019, 13, 11294–11302.

[6]

Li, H.; An, H.; Chong, B.; Yang, G. D.; Wang, L. Z. Homogeneous dual-site P lattice doping in CdS quantum rods for visible-light photocatalytic water splitting. Chem. Eng. Sci. 2021, 238, 116594.

[7]

Ejeian, M.; Wang, R. Z. Adsorption-based atmospheric water harvesting. Joule 2021, 5, 1678–1703.

[8]

Guan, X. J.; Zong, S. C.; Shen, S. H. Homojunction photocatalysts for water splitting. Nano Res. 2022, 12, 10171–10184.

[9]

Zhu, C.; Liu, C. A.; Fu, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Construction of CDs/CdS photocatalysts for stable and efficient hydrogen production in water and seawater. Appl. Catal. B 2019, 242, 178–185.

[10]

Yang, X. Y.; Hu, Z. C.; Yin, Q. W.; Shu, C.; Jiang, X. F.; Zhang, J.; Wang, X. H.; Jiang, J. X.; Huang, F.; Cao, Y. Water-soluble conjugated molecule for solar-driven hydrogen evolution from salt water. Adv. Funct. Mater. 2019, 29, 1808156.

[11]

Li, Y. X.; He, F.; Peng, S. Q.; Lu, G. X.; Li, S. B. Photocatalytic H2 evolution from NaCl saltwater over ZnS1−x−0.5yOx(OH)y -ZnO under visible light irradiation. Int. J. Hydrogen Energy 2011, 36, 10565–10573.

[12]

Yang, C. W.; Qin, J. Q.; Rajendran, S.; Zhang, X. Y.; Liu, R. P. WS2 and C-TiO2 nanorods acting as effective charge separators on g-C3N4 to boost visible-light activated hydrogen production from seawater. ChemSusChem 2018, 11, 4077–4085.

[13]

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[14]

Wang, H.; Wang, H.; Wang, Z. W.; Tang, L.; Zeng, G. M.; Xu, P.; Chen, M.; Xiong, T.; Zhou, C. Y.; Li, X. Y.; Huang, D. L.; Zhu, Y.; Wang, Z. X.; Tang, J. W. Covalent organic framework photocatalysts: Structures and applications. Chem. Soc. Rev. 2020, 49, 4135–4165.

[15]

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

[16]

Cao, J. J.; Shan, W. J.; Wang, Q.; Ling, X. C.; Li, G. Q.; Lyu, Y. N.; Zhou, Y.; Wang, J. Ordered porous Poly(ionic liquid) crystallines: Spacing confined ionic surface enhancing selective CO2 capture and fixation. ACS Appl. Mater. Interfaces 2019, 11, 6031–6041.

[17]

Yang, S. L.; Lv, H. W.; Zhong, H.; Yuan, D. Q.; Wang, X. C.; Wang, R. H. Transformation of covalent organic frameworks from N-acylhydrazone to oxadiazole linkages for smooth electron transfer in photocatalysis. Angew. Chem., Int. Ed. 2022, 61, e202115655.

[18]

Kan, X.; Xiao, S. Y.; Zheng, Y.; Cao, Y. N.; Xiao, Y. H.; Liu, F. J.; Jiang, L. L.; Xiao, F. S. Sustainable synthesis of ordered mesoporous materials without additional solvents. J. Colloid Interface Sci. 2022, 619, 116–122.

[19]

Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5, 2789–2793.

[20]

Dong, P. Y.; Wang, Y.; Zhang, A. C. J.; Cheng, T.; Xi, X. G.; Zhang, J. L. Platinum single atoms anchored on a covalent organic framework: Boosting active sites for photocatalytic hydrogen evolution. ACS Catal. 2021, 11, 13266–13279.

[21]

Chen, R. F.; Wang, Y.; Ma, Y.; Mal, A.; Gao, X. Y.; Gao, L.; Qiao, L. J.; Li, X. B.; Wu, L. Z.; Wang, C. Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. Nat. Commun. 2021, 12, 1354.

[22]

Li, C. Z.; Liu, J. L.; Li, H.; Wu, K. F.; Wang, J. H.; Yang, Q. H. Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 2357.

[23]

Li, L. Y.; Zhou, Z. M.; Li, L. Y.; Zhuang, Z. Y.; Bi, J. H.; Chen, J. H.; Yu, Y.; Yu, J. G. Thioether-functionalized 2D covalent organic framework featuring specific affinity to Au for photocatalytic hydrogen production from seawater. ACS Sustainable Chem. Eng. 2019, 7, 18574–18581.

[24]

Jana, B.; Reva, Y.; Scharl, T.; Strauss, V.; Cadranel, A.; Guldi, D. M. Carbon nanodots for all-in-one photocatalytic hydrogen generation. J. Am. Chem. Soc. 2021, 143, 20122–20132.

[25]

Wu, Q. Y.; Cao, J. J.; Wang, X.; Liu, Y.; Zhao, Y. J.; Wang, H.; Liu, Y.; Huang, H.; Liao, F.; Shao, M. W. et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater. Nat. Commun. 2021, 12, 483.

[26]

Chen, Q. T.; Liu, Y. H.; Gu, X. Q.; Li, D.; Zhang, D. X.; Zhang, D. Q.; Huang, H.; Mao, B. D.; Kang, Z. H.; Shi, W. D. Carbon dots mediated charge sinking effect for boosting hydrogen evolution in Cu–In–Zn–S QDs/MoS2 photocatalysts. Appl. Catal. B 2022, 301, 120755.

[27]

Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang, J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

[28]

Wang, H.; Qian, C.; Liu, J.; Zeng, Y. F.; Wang, D. D.; Zhou, W. Q.; Gu, L.; Wu, H. W.; Liu, G. F.; Zhao, Y. L. Integrating suitable linkage of covalent organic frameworks into covalently bridged inorganic/organic hybrids toward efficient photocatalysis. J. Am. Chem. Soc. 2020, 142, 4862–4871.

[29]

Ming, J. T.; Liu, A.; Zhao, J. W.; Zhang, P.; Huang, H. W.; Lin, H.; Xu, Z. T.; Zhang, X. M.; Wang, X. X.; Hofkens, J. et al. Hot π-electron tunneling of metal–insulator–COF nanostructures for efficient hydrogen production. Angew. Chem., Int. Ed. 2019, 58, 18290–18294.

[30]

Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527.

[31]

Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135, 17853–17861.

[32]

Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y. Z.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S. et al. Sulfone-containing covalent organic frameworks for photocatalytic hydrogen evolution from water. Nat. Chem. 2018, 10, 1180–1189.

[33]

Kappe, C. O. Controlled microwave heating in modern organic synthesis. Angew. Chem., Int. Ed. 2004, 43, 6250–6284.

[34]

De Greñu, B. D.; Torres, J.; García-González, J.; Muñoz-Pina, S.; De Los Reyes, R.; Costero, A. M.; Amorós, P.; Ros-Lis, J. V. Microwave-assisted synthesis of covalent organic frameworks: A review. ChemSusChem 2021, 14, 208–233.

[35]

Roberts, B. A.; Strauss, C. R. Toward rapid, “green”, predictable microwave-assisted synthesis. Acc. Chem. Res. 2005, 38, 653–661.

[36]

Zhang, W. W.; Chen, L. J.; Dai, S.; Zhao, C. X.; Ma, C.; Wei, L.; Zhu, M. H.; Chong, S. Y.; Yang, H. F.; Liu, L. J. et al. Reconstructed covalent organic frameworks. Nature 2022, 604, 72–79.

[37]

Lu, M.; Liu, J.; Li, Q.; Zhang, M.; Liu, M.; Wang, J. L.; Yuan, D. Q.; Lan, Y. Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O. Angew. Chem., Int. Ed. 2019, 58, 12392–12397.

[38]

Li, Y. M.; Yang, L.; He, H. J.; Sun, L.; Wang, H. L.; Fang, X.; Zhao, Y. L.; Zheng, D. Y.; Qi, Y.; Li, Z. et al. In situ photodeposition of platinum clusters on a covalent organic framework for photocatalytic hydrogen production. Nat. Commun. 2022, 13, 1355.

[39]

Sui, J. F.; Liu, H.; Hu, S. J.; Sun, K.; Wan, G.; Zhou, H.; Zheng, X.; Jiang, H. L. A general strategy to immobilize single-atom catalysts in metal–organic frameworks for enhanced photocatalysis. Adv. Mater. 2022, 34, 2109203.

[40]

Li, D. D.; Li, Y.; Liu, X. H.; Guo, Y.; Pao, C. W.; Chen, J. L.; Hu, Y. F.; Wang, Y. Q. NiAl2O4 spinel supported Pt catalyst: High performance and origin in aqueous-phase reforming of methanol. ACS Catal. 2019, 9, 9671–9682.

[41]

Yan, G.; Sun, X. D.; Zhang, K. L.; Zhang, Y.; Li, H.; Dou, Y. H.; Yuan, D.; Huang, H. W.; Jia, B. H.; Li, H. et al. Integrating covalent organic framework with transition metal phosphide for noble-metal-free visible-light-driven photocatalytic H2 evolution. Small 2022, 18, 2201340.

[42]

Ghosh, S.; Nakada, A.; Springer, M. A.; Kawaguchi, T.; Suzuki, K.; Kaji, H.; Baburin, I.; Kuc, A.; Heine, T.; Suzuki, H. et al. Identification of prime factors to maximize the photocatalytic hydrogen evolution of covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 9752–9762.

[43]

Cao, S.; Piao, L. Y. Considerations for a more accurate evaluation method for photocatalytic water splitting. Angew. Chem., Int. Ed. 2020, 59, 18312–18320.

[44]

Wu, K.; Jiang, R. Q.; Zhao, Y. L.; Mao, L.; Gu, X. Q.; Cai, X. Y.; Zhu, M. S. Hierarchical NiCo2S4/ZnIn2S4 heterostructured prisms: High-efficient photocatalysts for hydrogen production under visible-light. J. Colloid Interface Sci. 2022, 619, 339–347.

[45]

Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A Covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

[46]

Qi, Y.; Zhang, J. W.; Kong, Y.; Zhao, Y.; Chen, S. S.; Li, D.; Liu, W.; Chen, Y. F.; Xie, T. F.; Cui, J. Y. et al. Unraveling of cocatalysts photodeposited selectively on facets of BiVO4 to boost solar water splitting. Nat. Commun. 2022, 13, 484.

[47]

Meloni, S.; Palma, A.; Schwartz, J.; Kahn, A.; Car, R. Chemistry between magnesium and multiple molecules in tris(8-hydroxyquinoline) aluminum films. J. Am. Chem. Soc. 2003, 125, 7808–7809.

[48]

Xing, Y. M.; Yin, L. Y.; Zhao, Y. N.; Du, Z. L.; Tan, H. Q.; Qin, X.; Ho, W.; Qiu, T. Y.; Li, Y. G. Construction of the 1D covalent organic framework/2D g-C3N4 heterojunction with high apparent quantum efficiency at 500 nm. ACS Appl. Mater. Interfaces 2020, 12, 51555–51562.

[49]

Kronik, L.; Shapira, Y. Surface photovoltage spectroscopy of semiconductor structures: At the crossroads of physics, chemistry and electrical engineering. Surf. Interface Anal. 2001, 31, 954–965.

[50]

Ben, H. J.; Yan, G. J.; Liu, H. Y.; Ling, C. C.; Fan, Y.; Zhang, X. J. Local spatial polarization induced efficient charge separation of squaraine-linked COF for enhanced photocatalytic performance. Adv. Funct. Mater. 2022, 32, 2104519.

[51]

Zhu, L. Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 2014, 5, 3677–3687.

[52]

Choi, U. H.; Mittal, A.; Price, T. L. Jr.; Gibson, H. W.; Runt, J.; Colby, R. H. Polymerized ionic liquids with enhanced static dielectric constants. Macromolecules 2013, 46, 1175–1186.

[53]

Shao, P. P.; Li, J.; Chen, F.; Ma, L.; Li, Q. B.; Zhang, M. X.; Zhou, J. W.; Yin, A. X.; Feng, X.; Wang, B. Flexible films of covalent organic frameworks with ultralow dielectric constants under high humidity. Angew. Chem., Int. Ed. 2018, 57, 16501–16505.

[54]

Li, G. Q.; Fu, P.; Yue, Q. H.; Ma, F. P.; Zhao, X. L.; Dong, S.; Han, X.; Zhou, Y.; Wang, J. Boosting exciton dissociation by regulating dielectric constant in covalent organic framework for photocatalysis. Chem Catal. 2022, 2, 1734–1747.

[55]

Wang, H.; Jin, S.; Zhang, X. D.; Xie, Y. Excitonic effects in polymeric photocatalysts. Angew. Chem., Int. Ed. 2020, 59, 22828–22839.

[56]

Lan, Z. A.; Wu, M.; Fang, Z. P.; Chi, X.; Chen, X.; Zhang, Y. F.; Wang, X. C. A fully coplanar donor-acceptor polymeric semiconductor with promoted charge separation kinetics for photochemistry. Angew. Chem., Int. Ed. 2021, 60, 16355–16359.

[57]

Sachs, M.; Sprick, R. S.; Pearce, D.; Hillman, S. A. J.; Monti, A.; Guilbert, A. A. Y.; Brownbill, N. J.; Dimitrov, S.; Shi, X. Y.; Blanc, F. et al. Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nat. Commun. 2018, 9, 4968.

[58]

Wang, Y. O.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I. et al. Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat. Energy 2019, 4, 746–760.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 August 2022
Revised: 01 November 2022
Accepted: 16 November 2022
Published: 17 November 2022
Issue date: May 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors are thankful for funding from the National Natural Science Foundation of China (Nos. 22072065, 22178162, and 22222806), the Distinguished Youth Foundation of Jiangsu Province (No. BK20220053), and the Six Talent Peaks Project in Jiangsu Province (No. JNHB-035). The High-Performance Computing Center of Nanjing Tech University is grateful for its computational support.

Return